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Abstract
Background: Insulin-degrading enzyme (IDE) is a widely studied zinc-metalloprotease implicated
in the pathogenesis of type 2 diabetes mellitus, Alzheimer disease (AD) and varicella zoster virus
infection. Despite more than six decades of research on IDE, progress has been hampered by the
lack of well-characterized reagents targeting this biomedically important protease. To address this
important need, we generated and characterized new mouse monoclonal antibodies (mAbs)
targeting natively folded human and rodent IDE.

Results: Eight monoclonal hybridoma cell lines were derived in house from mice immunized with
full-length, natively folded, recombinant human IDE. The mAbs derived from these lines were
shown to detect IDE selectively and sensitively by a wide range of methods. Two mAbs in
particular—designated 6A1 and 6H9—proved especially selective for IDE in immunocytochemical
and immunohistochemical applications. Using a variety of methods, we show that 6A1 selectively
detects both human and rodent IDE, while 6H9 selectively detects human, but not rodent, IDE,
with both mAbs showing essentially no cross reactivity with other proteins in these applications.
Using these novel anti-IDE mAbs, we also developed sensitive and quantitative sandwich ELISAs
capable of quantifying IDE levels present in human brain extracts.

Conclusion: We succeeded in developing novel mAbs that selectively detect rodent and/or
human IDE, which we have shown to be suitable for a wide range of applications, including western
blotting, immunoprecipitation, immunocytochemistry, immunohistochemistry, and quantitative
sandwich ELISAs. These novel anti-IDE mAbs and the assays derived from them constitute
important new tools for addressing many unresolved questions about the basic biology of IDE and
its role in multiple highly prevalent human diseases.
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Background
Insulin-degrading enzyme (IDE; EC 3.4.24.56; a.k.a. insu-
lysin, insulinase, insulin protease) is an atypical zinc-met-
alloprotease that hydrolyzes several biomedically
important intermediate-sized peptide substrates, includ-
ing insulin, insulin-like growth factor-2, glucagon, amy-
lin, and the amyloid β-protein [1-3]. IDE is implicated in
the pathogenesis of Alzheimer disease (AD) [4,5] and
type-2 diabetes mellitus [6-8], and has also been identi-
fied as the cellular receptor for varicella zoster virus infec-
tion and cell-to-cell spread [9].

Despite the clear biomedical significance of this protease,
many fundamental questions about the basic biology of
IDE remain unresolved, due in part to a lack of sufficiently
selective reagents targeting this ubiquitous protease. In
particular, the precise subcellular localization of IDE
remains poorly defined. Although IDE is well-established
to reside in cytosol [1] and mitochondria [10], reports of
IDE's localization to other pathophysiologically impor-
tant subcellular compartments—such as endosomes
[11]—have not been confirmed by microscopic analysis
of intact cells with well-characterized anti-IDE antibodies.
Moreover, the mechanisms underlying the export of IDE
from the cell are completely unknown, though it has
recently been demonstrated that they involve an uncon-
ventional, non-classical secretion pathway [12]. Methods
capable of detecting and quantifying secreted forms of
IDE would greatly facilitate the elucidation of this impor-
tant pathway. Finally, it will be important to detect genet-
ically or environmentally induced variations in IDE
protein levels, which will require the development of
assays permitting accurate quantification of IDE levels in
relevant tissues.

To help close these gaps in our understanding of the biol-
ogy of IDE, we developed eight novel mouse mAbs that
detect rodent and/or human IDE in diverse applications
in a highly selective and species-specific manner. Notably,
a subset of these mAbs were particularly well suited for
detecting endogenous IDE by immunocytochemistry and
immunohistochemistry. We also describe the develop-
ment of sensitive and quantitative sandwich ELISAs capa-
ble of detecting variations in IDE levels in human brain
extracts. Collectively, these novel anti-IDE mAbs, and the
ELISA incorporating them, constitute important new tools
for investigating both the basic biology of IDE and its
potential derangement in disease.

Results
Detailed methods for all experimental procedures are pro-
vided in the Additional File 1.

Generation of Monoclonal Hybridomas Expressing Anti-
IDE mAbs
To generate mAbs targeting IDE, BALB/ByJ mice were
immunized in house with highly purified, full-length,
natively folded, recombinant human IDE. Spleen cells
were harvested and fused with SP2/0-Ag14 myeloma cells,
and monoclonal hybridomas were selected for by growth
in HAT medium. From among a total of 576 hybridoma
lines, 8 clones were selected and expanded based on their
reactivity against a second, natively folded, recombinant
human IDE protein. The anti-IDE mAbs derived from
these hybridomas were purified by protein G-sepharose
chromatography, and their isotypes and half-titers were
determined (Table 1).

Western Blotting and Immunoprecipitation
By western blotting, endogenous human IDE present in
HeLa cell extracts was readily detected by 4 anti-IDE
mAbs: 2A1, 4H5, 6A1 and 6H9 (Fig. 1A). These mAbs
each detected a prominent ~110-kDa band identical in
size to that detected by the well characterized rabbit poly-
clonal antibody, αIDE-1 [13] (Fig. 1A). Little to no non-
specific staining was observed, which in no case exceeded
that detected by identical amounts of normal mouse IgG
(Fig. 1A). Rodent IDE extracted from mouse liver, by con-
trast, was detected by 4H5 and 6A1, but not by other
mAbs (Fig. 1B). 6H9 detected multiple bands, including
some near ~110 kDa (Fig. 1B); however, these bands were
found to be non-specific, because an identical pattern was
observed in cell extracts derived from wild-type and IDE-
KO mice (not shown).

With the exception of 4H5, human IDE was successfully
immunoprecipitated by all anti-IDE mAbs, albeit the effi-
ciency of 4C5 was less than the other mAbs (Fig. 1C). By
contrast, rodent IDE was successfully immunoprecipi-
tated by only a single mAb, 6A1 (Fig. 1C).

Immunocytochemistry
To evaluate the specificity of our anti-IDE mAbs for detect-
ing rodent IDE by immunocytochemistry, we compared
the signal detected in immortalized hepatocytes derived
from wild-type mice or mice lacking IDE (IDE-KO mice).
From among all antibodies tested, including multiple

Table 1: Properties of anti-IDE monoclonal antibodies

Clone: 2A1 3D8 4B4 4C5 4H5 4H7 6A1 6H9

Isotype: IgG1 κ IgG1 κ IgG1 κ IgG2a κ IgG2a κ IgG1 κ IgG2b κ IgG2a κ

ELISA half-titer (ng/mL): 250 32 32 8 4 125 2 8
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commercially available ones, 6A1 was unique in strongly
labeling wild-type hepatocytes (Fig. 2A), while showing
no immunoreactivity in IDE-KO hepatocytes imaged
under identical conditions (Fig. 2B). Consistent with pre-
vious results [14], IDE was found to be widely distributed
throughout the cytoplasm and largely excluded from the
nucleus by high-resolution confocal microscopy (Fig. 2A).

To evaluate the specificity of our mAbs for detecting
human but not rodent IDE by immunocytochemistry, we
analyzed Chinese hamster ovary (CHO) cells transiently
transfected with a vector encoding human IDE. Among
the antibodies tested, superior results were obtained with
6H9, which was found to intensely stain cells expressing
human IDE, while showing no background staining in
neighboring, nontransfected cells expressing rodent IDE
(Fig. 1C). These results are consistent with the western
blotting and immunoprecipitation results obtained for
this mAb (Fig 1). 6H9 also readily detected endogenous
levels of human IDE, as revealed by prominent staining
present in unmodified HeLa cells (Fig. 1D).

Immunofluorescence and Immunohistochemistry
The suitability of the anti-IDE mAbs for immunohisto-
chemical applications was assessed by staining paraffin-
embedded sections from pathologically unaffected
human hippocampus and cerebellum. 6H9 (Fig. 3) and
6A1 (not shown) showed highly similar patterns of stain-
ing relative to one another as determined by both immun-
ofluorescent (Fig. 3A, C) and immunohistochemical (Fig.
3B, C) methods. As expected from the ubiquitous expres-
sion of IDE, immunoreactivity was broadly distributed,

though some cell-type specific variations in staining
intensity were apparent. Notably, a subset of neuronal
cells showed comparatively higher IDE immunoreactivity,
including CA1 pyramidal cells in the hippocampus (Fig.
3A, B) and Purkinje cells in the cerebellum (Fig. 3C, D).

IDE Sandwich ELISAs
We next sought to develop a sandwich ELISA capable of
detecting and quantifying IDE present in human brain
extracts. From among several configurations tested, we
elected to characterize a sandwich ELISA using 6H9 for
capture and horse radish peroxidase (HRP)-conjugated
6A1 for detection, as these two antibodies had the most
robust combined results with the western blot, immun-
ofluorescent and immunohistochemical assays. This
ELISA showed a linear response to a wide range of concen-
trations of recombinant IDE, where the minimum
amount of recombinant IDE that was repeatedly and reli-
ably detected was 1.7 ng/well, or 156 pM in 100 μL (Fig.
4A).

To validate the ability of this ELISA to detect variations in
IDE levels from human brain samples, we quantified IDE
levels in cerebellar extracts from a large set of autopsied
AD brains both by western blot analysis with 2A1 (see Fig.
4B) and by 6H9/6A1 sandwich ELISA. For both methods,
absolute IDE levels were determined by calibration to
internal recombinant human IDE standards. After appro-
priate quality control measures and normalization to
internal control samples (see Additional File 1), IDE levels
within a total of 49 human cerebellar samples were suc-
cessfully measured by both methodologies (Fig. 4C).

Detection of human and rodent IDE by 6A1 and 6H9 using western blotting and immunoprecipitationFigure 1
Detection of human and rodent IDE by 6A1 and 6H9 using western blotting and immunoprecipitation. A, West-
ern blots of HeLa cell lysate (30 μg/lane) detected with individual anti-IDE mAbs (10 μg/mL) or, as a control, equivalent 
amounts of normal mouse IgG (NMI). For comparative purposes, the same cell lysate was probed with αIDE-1, a well-charac-
terized rabbit polyclonal anti-IDE antibody ([13]; generous gift of D. Selkoe, Harvard Medical School). B, Western blots of 
mouse liver extracts (30 μg/lane) detected with anti-IDE mAbs or NMI (10 μg/mL). Note that 6H9 labels multiple non-specific 
bands, but does not label rodent IDE per se (see text). C, Immunoprecipitation of human (upper panel) or rodent (lower panel) 
IDE by anti-IDE mAbs or NMI and detected by western blotting with αIDE-1. Note that rodent IDE was successfully immuno-
precipitated by 6A1, exclusively.
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 Despite the different set of antibodies employed and
potential batch effects, we observed a highly significant
correlation between results obtained with the two meth-
odologies (p < 0.0001, r2 = 0.3). Overall, the 6H9/6A1
ELISA consistently detected less IDE protein (7 ± 1%,
mean ± SD) relative to that detected by western blotting
(see Discussion). Using a subset of brain samples as a ref-
erence, qualitatively and quantitatively similar results
were also obtained using ELISAs configured with multiple
different anti-IDE mAbs combinations (not shown).

Discussion
In the present study, we succeeded in developing 8 mon-
oclonal hybridoma lines in house that express a versatile
set of anti-IDE mAbs. Two mAbs in particular—6A1 and
6H9—were found to be useful in a wide array of applica-
tions, detecting human and rodent IDE in a highly selec-
tive and species-specific manner. 6A1 was found to detect
both human and rodent IDE by western blotting, immu-
noprecipitation, immunocytochemistry, and immunohis-
tochemistry. 6H9, by contrast, detected human but not
rodent IDE, as determined by the same methods.

We also developed sandwich ELISAs capable of detecting
human IDE in brain extracts and validated the ELISA
results with quantitative western blot analysis. There was
a significant correlation between IDE levels detected by
western blotting with 2A1 and with the 6H9/6A1 sand-
wich ELISA. Despite the strong correlation between the
two methods, the absolute amounts of IDE detected by
ELISA were consistently lower than those detected by
western blotting. This disparity may be attributable tech-
nical considerations, such as the particular protein extrac-
tion conditions used in this study (see Additional File 1),
which could have denatured IDE sufficiently to affect its
detection by ELISA. Future studies comparing the out-
come obtained under different extraction conditions
should resolve this question. On the other hand, several
intriguing biological explanations also exist. For example,
endogenous IDE might normally be complexed to other
proteins, or may contain post-translational modifications,
either or both of which could sterically block or remove
the epitopes recognized by the antibodies used for ELISAs.
Alternatively, or in addition, it may be that a substantial
portion of IDE present in post-mortem extracts is itself not
natively folded or is modified in other ways.

Although outside the scope of this methodology paper, it
is notable that there was substantial variation in absolute

Immunocytochemistry using IDE antibodies 6A1 and 6H9Figure 2
Immunocytochemistry using IDE antibodies 6A1 and 
6H9. A, B, Immortalized hepatocytes from wild-type (A) and 
IDE-KO (B) mice immunolabeled with 6A1 (green, 10 μg/mL) 
and visualized under identical conditions by laser confocal 
microscopy (100× magnification). Nuclei are stained with 
propidium iodide (red). Note the complete absence of 6A1 
immunoreactivity in IDE-KO cells (B). C, CHO cells tran-
siently transfected with human IDE cDNA, labeled with 6H9 
(green, 20 μg/mL). Nuclei are stained with DAPI (blue). Note 
absence of 6H9 immunoreactivity in non-transfected cells. D, 
HeLa cells stained with 6H9 (green, 10 μg/mL), showing that 
this mAb can detect endogenous levels of human IDE. Images 
in C and D were acquired using conventional fluorescent 
microscopy (20× magnification).

Immunofluorescent and immunohistochemical detection of IDE in normal human brain tissueFigure 3
Immunofluorescent and immunohistochemical 
detection of IDE in normal human brain tissue. A, B, 
Hippocampal sections of paraffin-embedded human brain tis-
sue stained with 6H9 (100 μg/mL) and detected by immun-
ofluorescence (A) and immunohistochemistry (B). Note the 
presence of IDE in pyramidal neurons and glia detected by 
both methods. C, D, Cerebellar sections stained with 6H9 
(100 μg/mL) and detected by immunofluorescence (C) and 
immunohistochemistry (D). Note the presence of IDE in the 
cell bodies of Purkinje cells.
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IDE levels (~10-fold) detected by both ELISA and Western
blotting in the large set of AD cerebellar samples we exam-
ined. In the future, it will be important to evaluate
whether these changes correlate with genetic or other risk
factors for AD. Further insight into these and many other
important questions will be facilitated by the develop-
ment of this well-characterized and versatile set of anti-
IDE mAbs.

Abbreviations
AD: Alzheimer disease; ELISA: enzyme-linked immuno-
sorbent assay; HAT: hypoxanthine, aminopterin, and thy-
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knockout; mAb: monoclonal antibody.
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