
BioMed CentralMolecular Neurodegeneration

ss
Open AcceResearch article
Neuroprotective effects of blockers for T-type calcium channels
Norelle C Wildburger, Avary Lin-Ye, Michelle A Baird, Debin Lei and 
Jianxin Bao*

Address: Department of Otolaryngology, Center for Aging, Washington University, 4560 Clayton Avenue, St Louis, MO 63110, USA

Email: Norelle C Wildburger - norelle_wildburger@baylor.edu; Avary Lin-Ye - alin-ye@yahoo.com; Michelle A Baird - mbaird@yahoo.com; 
Debin Lei - dlei@ent.wustl.edu; Jianxin Bao* - jbao@wustl.edu

* Corresponding author    

Abstract
Cognitive and functional decline with age is correlated with deregulation of intracellular calcium,
which can lead to neuronal death in the brain. Previous studies have found protective effects of
various calcium channel blockers in pathological conditions. However, little has been done to
explore possible protective effects of blockers for T-type calcium channels, which forms a family of
FDA approved anti-epileptic drugs. In this study, we found that neurons showed an increase in
viability after treatment with either L-type or T-type calcium channel antagonists. The family of low-
voltage activated, or T-type calcium channels, comprise of three members (Cav3.1, Cav3.2, and
Cav3.3) based on their respective main pore-forming alpha subunits: α1G, α1H, and α1I. Among
these three subunits, α1H is highly expressed in hippocampus and certain cortical regions.
However, T-type calcium channel blockers can protect neurons derived from α1H-/- mice,
suggesting that neuroprotection demonstrated by these drugs is not through the α1H subunit. In
addition, blockers for T-type calcium channels were not able to confer any protection to neurons
in long-term cultures, while blockers of L-type calcium channels could protect neurons. These data
indicate a new function of blockers for T-type calcium channels, and also suggest different
mechanisms to regulate neuronal survival by calcium signaling pathways. Thus, our findings have
important implications in the development of new treatment for age-related neurodegenerative
disorders.

Background
Calcium signaling pathways play a vital role in the sur-
vival of neurons. With increasing age, calcium homeosta-
sis can be disrupted in the brain, which leads to cognitive
and functional decline [1-6]. Thus it raises the possibility
of protecting neurons by identifying chemicals able to
modulate calcium homeostasis in neurons during aging.

Calcium homeostasis can be regulated by several types of
calcium channels, including voltage-gated calcium chan-

nels (VGCCs). VGCCs can be divided into two groups:
high-voltage activated calcium channels such as L-type
calcium channels and low-voltage activated calcium chan-
nels such as T-type calcium channels [7,8]. The family of
T-type calcium channels comprise three members
(Cav3.1, Cav3.2, and Cav3.3) based on their respective
main pore-forming alpha subunits: α1G, α1H, and α1I
[9,10]. T-type calcium channels are predominantly found
in neurons [11,12], but have been found in other cells
including smooth muscle myocytes, pacemaker cells of
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the heart, glial cells, fibroblasts, osteoblasts, retinal cells,
and adrenocortical cells [13-15]. L-type channels also
have a wide distribution in central nervous system [16].

Blockers for both L-type and T-type calcium channels have
been developed to treat various diseases. Trimethadione
(TMO) is a T-type calcium channel blocker approved by
the FDA as an anticonvulsant for absence seizures. Inter-
estingly, TMO can also ameliorate noise-induced hearing
loss (NIHL) by preserving the outer hair cells [17] and
extend the life span of C. elegans [18]. Another blocker for
T-type calcium channels, mibefradil, is a particularly effec-
tive inhibitor of the Ca+2 influx mediated by the α1H
(Cav3.2) subunit [19]. In previous studies, it has shown to
increase rat survival with chronic heart failure [20] and
limit infarct size [21] with weak inotropic effects [22-24].
Mibefradil can protect neurons under oxygen-glucose
deprivation events and post-ischemic conditions [25].
Blockers for L-type calcium channels such as nimodipine
have been shown to increase survival after global ischemia
[26], prevent apoptotic and necrotic cell death after tran-
sient focal ischemia [27,28], reduce damage resulting
from brain edema [29], improve patient outcome with
severe head injuries, related secondary neuronal damage
[30], and subarachnoid hemorrhage [31]. However, the
possible molecular mechanisms for the beneficial effects
of T-type and L-type calcium channel blockers are largely
unknown, mainly due to complicated in vivo interactions.
In this study, we established cell culture models to directly
test whether these drugs could preserve neurons in vitro in
both long-term and short-term cultures.

Results
Neuroprotection by Nimodine
To test whether blockers for L-type calcium channels
could protect neurons in our neuronal culture model, we
cultured neurons from the hippocampuses of 18 day-old
neonatal (E18) C57BL/6J mice. The viability of neurons in
these cultures was then analyzed using lactate dehydroge-
nase (LDH) assay after 8-days culture and 48 hours after
treatment with nimodipine (total 10 days) at a dose of 1
μM (Fig. 1). The control was normalized to 100% and cell
death was expressed as % of control. In comparison with
the control there was a significant protection of hippoc-
ampal neurons by nimodipine (t-test, p = 0.027). This
result demonstrated an increase in cell survival after
nimodipine treatment, which suggested that the benefi-
cial effect of the same drug in ischemia studies could be
due to the direct neuronal protection [26-28].

Neuroprotection by TMO
To test whether blockers for T-type calcium channels
could protect neurons, we prepared similar neuronal cul-
tures and treated them for 48 hours with TMO at a range
of concentrations (0 mM, 0.3 mM, 0.6 mM, and 0.9 mM)

in order to establish a dose curve (Fig. 2). When the cell
viability was quantified in the hippocampal culture (total
10 days) with one-way ANOVA, there was a statistical sig-
nificance between the drug groups and the control (p =
0.0090). In the hippocampal culture, no significant differ-
ence was observed between the control and groups treated
with TMO at either 0.3 mM or 0.9 mM (p = 0.14 and p =
0.084 respectively). However, the group treated with TMO
at 0.6 mM showed a significant preservation of hippocam-
pal neurons (p = 0.008). When one-way ANOVA was per-
formed on the cortical culture there was a statistical
significance between the drug groups and the control (p =
0.0219). The cortical culture also showed the greatest sig-
nificant preservation of neurons at the 0.6 mM dose (p =
0.033), and TMO at 0.3 mM also preserved cortical neu-
rons (p = 0.048). These data provide first evidence for the
TMO protection of both hippocampal and cortical neu-
rons.

Neuroprotection by Mibefradil
To ensure that this neuroprotective effect was not exclu-
sive to trimethadione alone, but to T-type calcium chan-
nel blockers in general, we tested similar neuronal
cultures with mibefradil (Fig. 3). Using cells from the hip-
pocampuses of E18 mice, neurons were cultured for eight
days and treated with mibefradil in doses of 0 μM, 0.5 μM,

Neuronal protection by nimodipineFigure 1
Neuronal protection by nimodipine. Hippocampal neu-
rons from E18 C57BL/6J mice and cultured for 7-8 days in 
neurobasal medium with 2% FBS. Fresh medium was placed 
in wells and neurons were treated with either 0 or 1 μM 
nimodipine (n = 12 each). Neurons were subjected to LDH 
assay to quantify cell death 48 h later (10 DIV); nimodipine 
remained in the cultures throughout this time. Mean LDH 
value expressed as % of control. *p ≤ 0.05 compared with 
control condition.
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1 μM, and 10 μM. LDH was performed 48 hours after
treatment. The protection was statistically significant after
the treatment of mibefradil at either 0.5 μM or 1 μM (p =
0.0355, one-way ANOVA). The treatment of mibefradil at
10 μM was toxic to neurons (data not shown). When the
data was normalized and expressed as % of control, and
student's t test performed for each dose, mibefradil at 0.5
μM or 1 μM was significant in preserving neurons (p =
0.0494 and p = 0.019 respectively). Therefore, blockers for
T-type calcium channels could protect neurons directly at
the cellular level.

The 1H subunit is not the molecular target for 
neuroprotection by blockers for T-type calcium channels
Because the α1H subunit is highly expressed in the hip-
pocampus and regions of the cortex, we tested whether
this subunit was the key molecule for neuroprotection by
blockers of T-type calcium channels. The hippocampal
and cortical neurons derived from E18 α1H-/- mice were
cultured and treated with either 0.6 mM TMO or 1 μM
mibefradil. LDH assay was performed on both cultures 48
hrs after treatment (Fig. 4). Using one-way ANOVA, we
found a statistical significance between the control and
drug groups (p = 0.0152 for hippocampal neurons and p
= 0.0106 for cortical neurons). When the data was nor-

malized and expressed as % of control, student's t test was
performed for each concentration. Both TMO and mibe-
fradil could significantly protect hippocampal neurons (p
= 0.01 and p = 0.044 respectively). For the cortical neu-
rons, mibefradil demonstrated significant protective
effects (p = 0.01). While TMO demonstrated protective
effects, but they were not statistically significant (P =
0.081). These results suggested that the neuroprotective
effects of both drugs were not through the α1H subunit.

Neuroprotection in long-term cultures
We also tested whether blockers of L-type and T-type cal-
cium channels could protect neurons in long-term neuro-
nal culture, an "age in the dish" model [32]. Hippocampal
and cortical neurons were cultured for a total of 15 days.
At eight days in culture, neurons were treated with either
nimodipine at 1 μM or TMO at 0.6 mM. Seven days after
the treatment, LDH assay was performed. Nimodipine
protected both hippocampal (p = 0.009) and cortical (p =
0.008) neurons (Fig. 5), while TMO was ineffective in pro-
tecting neurons in long-term cultures (Fig. 6; t-test).

Discussion
Intracellular calcium increase is an early event triggering
neuronal death in age-related neurodegenerative disor-

Neuronal protection by trimethadioneFigure 2
Neuronal protection by trimethadione. (A) E18 hippocampal neurons cultured in neurobasal medium with 2% FBS for 7-
8 days. Medium was replenished at the 8th day of culture and neurons treated with either 0 mM, 0.3 mM, 0.6 mM, or 0.9 mM 
(control, n = 16; treatment groups, n = 8 each). Cell death was performed with LDH assay 10 DIV (24 h later); mean LDH 
value expressed as % of control. *p ≤ 0.05 and **p ≤ 0.01 compared with the control condition. Raw data was used for one-
way ANOVA. (B) E18 cortical neurons cultured in neurobasal medium with 2% FBS for 7-8 days. Medium was replenished on 
the 8th day and neurons treated with either 0 mM, 0.3 mM, 0.6 mM, or 0.9 mM (n = 12 each). Cell viability was performed with 
LDH assay on 10 DIV. Mean LDH value expressed as % of control. *p ≤ 0.05 compared with the control using student's t test. 
Raw data was used for one-way ANOVA.
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ders such as Alzheimer's disease [1-6]. The L-type voltage-
gated calcium channels have been implicated in playing a
role in neuronal death during aging [33,34]. Though T-
type calcium current increases with age [35], to our
knowledge the role of low-voltage gated calcium channels
in the neuronal survival has never been studied. Using a
well characterized in vitro neuronal culture model, we first
show that both blockers of L-type and T-type calcium
channels can protect neurons in the dish. Although the
α1H subunit is highly expressed in the hippocampus and
in regions of the cortex, blockers for T-type calcium chan-
nels continued to protect neurons derived from the α1H-
/- mice, indicating that the neuroprotection demonstrated
by these drugs is not through the α1H subunit. Interest-
ingly, nimodipine, a blocker for L-type calcium channels,
can protect neurons in the long-term culture model, while
blockers for T-type calcium channels are unable to protect
neurons in the same culture model.

It has been suggested that T-type calcium channels con-
tribute to intracellular calcium increase and cell death for
both glial and neuronal cells under ischemia conditions
[36,25]. Here, we show that trimethadione and mibefradil
provide a very significant protection against neuronal
death in the dish. Both drugs are selective inhibitors for T-
type calcium channels. The neuroprotective effects of anti-

convulsants on organotypic hippocampal cultures sub-
jected to transient ischemia have been reported [37]. One
possible explanation for the lack of neuroprotection with
0.9 mM trimethadione (Fig. 2) is an excessive block of cal-
cium channel currents causing a detrimental lowering of
intracellular calcium concentration in the cell. Since cal-
cium ions play important roles as second messengers, ves-
icle fusion and neurotransmitter release, and axon growth
cones, any drastic inhibition of Ca+2 currents would also
be lethal to neurons [38-44]. It is interesting that ethosux-
imide, phenobarbital, and phenytoin, reported to be the
most neuroprotective anticonvulsants, are also the drugs
with most potent T-type calcium current inhibitory activ-
ity [45,46], which suggests that these drugs protect neu-
rons through blocking T-type calcium channels.

In addition, our results show that similar drugs can still
protect neurons derived from mice lacking the α1H subu-
nit. The neuroprotection demonstrated by T-type calcium
channel antagonists in this case can be due to the presence
of the other two subunits (α1G or α1I) in the cultured
neurons. Therefore, it would be interesting in the future to
test their protective effects in neurons derived from mice
lacking either of the other two α1 subunits. In addition,
blocking of other ion channels by these two drugs may
also be involved in protection of neurons because both of
these drugs can bind to other channels with low affinities.
For example, mibefradil can block delayed rectifier potas-
sium channels and sodium channels [47,48].

Presently, there are no effective medications for age-
related neurodegeneration. Human population studies
have correlated female patients taking calcium channel
blocking medication with a better hearing threshold dur-
ing aging [49], which suggests that altered calcium regula-
tion might contribute to age-related loss auditory
neurons. The "calcium hypothesis of neuronal aging" [5]
has been supported by extensive studies, especially the
role of excess calcium influx via L-type voltage-gated cal-
cium channels and age-related changes in calcium intrac-
ellular buffering [50,1]. However, few studies have
explored the role of T-type voltage-gated calcium channels
in age-related neuronal loss. Therefore, we have tested
whether trimethadione could protect neurons in the long-
term culture. Surprisingly, no protective effects are
observed by trimethadione while a significant protection
is observed after blocking L-type calcium channels. Our
observation raises the possibility that the survival of neu-
rons depends not only on the level of intracellular calcium
but also the source of intracellular calcium. These intrac-
ellular sources of calcium include and are not limited to
the endoplasmic reticulum via the ryanodine receptors
and inositole 1,4,5-triphosphate receptors [51,52]. In
addition, due to the fact that T-type calcium channel
blockers can increase C. elegans lifespan, our finding does

Neuronal protection by MibefradilFigure 3
Neuronal protection by Mibefradil. Using cells from the 
hippocampi of E18 mice, neurons were cultured for 7-8 days 
with neurobasal medium with 2% FBS. On the 8th day of cul-
ture, medium was replaced and cells treated with mibefradil 
in concentrations of 0 μM, 0.5 μM, and 1 μM (all groups, n = 
12). Cell death was quantified using LDH assay 48 hours after 
treatment. Raw data was used for one-way ANOVA. When 
the data was expressed as % of control. *p ≤ 0.05 compared 
to the control was significant using student's t test.
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not exclude the possibility that trimethadione may protect
neurons in vivo through its systemic effects [18].

Currently, mechanisms for neuroprotection by these
antiepileptic drugs are unknown. Although there are
many differences between in vitro and in vivo conditions,
culture models can be useful to dissect molecular path-
ways underlying age-dependent changes in neurons [53].
Our data from the neuronal cultures suggest that this cul-
ture model can be an effective model system to dissect
possible protective mechanisms for these drugs. Our find-
ings also encourage potential clinical studies to examine
adults taking calcium channel blockers for their cognitive
functions with age, including the risk of neurodegenera-
tive disorders.

Conclusion
Our findings suggest that cortical and hippocampal neu-
rons can be protected in vitro by blockers for L-type or T-
type calcium channels. The neuroprotection of blockers
for T-type calcium channels is not through the α1H subu-
nit. Furthermore, neurons in the long-term culture can be
protected only by blocking L-type calcium channels,
which suggests different molecular mechanisms for short-

term and long-term survival of neurons. Our data provide
insights into possible new uses of this family of antiepi-
leptic drugs in protecting neuronal death under patholog-
ical conditions.

Methods
Tissue preparation
C57BL/6J and α1H-/- pregnant mice were sacrificed and
the fetuses removed at E18. The pups were placed onto a
Petri dish with Minimal Essential Medium plus glutamate
(MEM) (Gibco, Grand Island, NY). The placenta removed
and the pups placed in another Petri dish sterilized with
ethanol. The E18 pups were decapitated and the brains
removed without extracting the cerebellum and placed in
a separate dish with MEM. The brains were sliced in half
and the left and right hippocampus removed in addition
to the cortex. Hippocampal and cortical sections were
each transferred into separate 50 ml polypropylene centri-
fuge tubes- gamma sterilized (Biolgix, Shawnee Mission,
KS) with the MEM using a milliliter pipette. Next, the
entire medium was removed from the tube (leaving the
cells at the bottom); 5 ml of neurobasal with 2% FBS
(Gibco, Grand Island, N.Y.) replaced the old medium.
The contents of the tube were mixed using a syringe ten

Protection of α1H-/- hippocampal and cortical neurons by either trimethadione or mibefradilFigure 4
Protection of 1H-/- hippocampal and cortical neurons by either trimethadione or mibefradil. Neurons of E18 
knockout mice missing the α1H subunit of the T-type calcium channel were cultured for 7-8 days. (A) On day 8 of culture, the 
medium was refreshed and the hippocampal neurons given either 0 mM, 0.6 mM TMO, or 1 μM mibefradil (control, n = 24; 
treatment groups, n = 12 each). After 48 hours, cell death was quantified using an LDH assay. The raw data was used to per-
form one-way ANOVA. Afterwards the mean LDH values were expressed as % of control. *p ≤ 0.05 and **p ≤ 0.01 compared 
to the control was significant. (B) Cortical neurons were given either 0 mM, 0.6 mM TMO, or 1 μM mibefradil (control, n = 24; 
treatment groups, n = 12 each). After 48 hours, cell death was quantified using an LDH assay. The raw data was used to per-
form one-way ANOVA. Afterwards the mean LDH values were expressed as % of control. *p ≤ 0.05 and **p ≤ 0.01 compared 
to the control was significant using student's t test.
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Neuroprotection by Nimodipine in long-term cultureFigure 5
Neuroprotection by Nimodipine in long-term culture. Hippocampal neurons from E18 C57BL/6J mice were cultured 
for 7-8 days in neurobasal medium containing 2% FBS. (A) On the 8 DIV, the medium was replenished and the neurons treated 
with either 0 or 1 μM nimodipine (control, n = 6; nimodipine, n = 6). Cell death was measured using LDH assay on 15 DIV. 
Mean values were expressed as % of control ± SEM. *p ≤ 0.05 and **p ≤ 0.01 compared with the control condition. (B) Corti-
cal neurons were treated with either 0 or 1 μM nimodipine (control, n = 6; nimodipine, n = 6). Cell death was measured using 
LDH assay on 15 DIV. Mean values were expressed as % of control. *p ≤ 0.05 and **p ≤ 0.01 compared with the control con-
dition using student's t test.

No neuroprotection by Trimethadione in long-term cultureFigure 6
No neuroprotection by Trimethadione in long-term culture. (A) Hippocampal neurons were cultured for 7-8 days and 
treated with 0.6 mM TMO. On 15 DIV, cell death was quantified with the LDH assay. The mean values were expressed as % of 
control (control, n = 12; trimethadione, n = 6) (B) In vitro cortical neurons were cultured for 7-8 days and treated with 0.6 mM 
TMO (control, n = 12; trimethadione, n = 6). On 15 DIV, cell death was quantified using LDH assay. The mean values were 
expressed as % of control ± SEM.
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times. Then, using the syringe, the contents were trans-
ferred into a 15 ml polypropylene centrifuge tube using a
40 μM nylon filter (BD Falcon, Bedford, MA). The cells
were centrifuged at 1,000 rpms for 10 min When finished
the medium was removed with a pipette and 5 ml of fresh
neurobasal with 2% FBS added. A milliliter pipette was
used to mix the contents of the tube five times and then
centrifuge (1,000 rpms; 10 min). Once again the medium
was removed and replaced with fresh neurobasal (no FBS;
5 ml). 11 ml of neurobasal (no FBS) was placed in a large
centrifuge tube and the contents of the small centrifuge
tube (total 5 ml) were transferred in to the large tube.
Using a micropipette, 150 μl of the cell solution was
placed into each well of a 96 tissue culture plate (Zellkul-
tur, Trasadingen, Switzerland). The culture plates were
kept in a 37°C incubator, CO2 at 5% (Fisher Scientific).

Preparation of a 96 well culture plate
Culture plates were removed from their wrapping and
each well was coated with 50 μl of Poly-D lysine hydro-
bromide (Sigma, St. Louis, MO). The plates were left to sit
for 90 min with Poly-D. Each well was washed out three
times using 200 μl of dH20. The plates were sealed with
parafilm (Ameican National Can, Greenwich, CT) and
refrigerated at 4°C for later use.

Neurobasal medium with 2% FBS
1 ml of B27 supplement (Gibco, Grand Island, NY), 125
μl of L-gluton (200 milli moles) (Sigma, St. Louis MO),
50 μl penicillin (WUSM, St. Louis, MO) 48 ml of neuro-
basal medium (Gibco, Grand Island, NY), and 1 ml of FBS
(100%).

Minimal Essential Medium (MEM)
1 ml of B27 supplement, 125 μl of L-gluton (200 milli
moles), 50 μl penicillin, and 49 ml of neurobasal
medium.

Monitoring of cell death
To measure cell cytotoxicity, lactate dehydrogenase
(LDH) assay was performed. LDH, an enzyme normally
found in the cytosol of cells, is released upon damage or
death to the cell. 25 μl of medium from the hippocampal
or cortical cultures were placed in a 96 well tissue plate
with 125 μl LDH buffer (4.53 g KH2PO4 and 11.61 g
K2HPO4 in 1 liter, pH 7.4) and 100 μl NADH (Sigma, St.
Louis, MO) solution (0.03% NADH in LDH buffer,
freshly made) for 10 min. 25 μl of pyruvate solution
(0.25% pyruvate in LDH buffer) was added right before
the reading using Thermo max microplate reader (Molec-
ular Devices, Sunnyvale, CA), with Soft Max Pro at 340
nm.

Statistical Analysis
Results were expressed as mean ± standard error (SEM).
Student's t test and one-way ANOVA test were used in ana-

lyzing data for LDH measurements. A p-value less than
.05 was regarded as statistically significant.
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