POSTER PRESENTATION

Open Access

The composition of the γ -secretase complex defines its A β product profile

Hermien Acx^{1,2*}, Lucía Chávez Gutiérrez^{1,2}, Lutgarde Serneels^{1,2}, Bart De Strooper^{1,2}

From Molecular Neurodegeneration: Basic biology and disease pathways Cannes, France. 10-12 September 2013

Background

A β peptides accumulate and aggregate in the brain of patients suffering from Alzheimer's disease (AD). Since γ -secretase is the final protease involved in the production of A β peptides, it has been proposed as a potential drug target in AD. This multiprotein complex consists of four essential subunits: presenilin (PSEN), nicastrin (NCT), anterior pharynx defective (APH1) and presenilin enhancer 2 (PEN-2), which assemble in a 1:1:1:1 stoichiometry. As two PSEN genes and two APH1 genes exist, at least four different γ -secretase complexes exist. Previous studies suggest that this structural heterogeneity has functional implications [1]. Here, we show that the subunit composition of the γ -secretase complex determines its activity and we unravel the biochemical mechanism underlying these differences.

Materials and methods

The activity of purified γ -secretase complexes was assessed in an *in vitro* assay. The endopeptidase and carboxypeptidase-like activities of the γ -secretase complex were evaluated by measuring the *de novo* generation of amyloid precursor protein intracellular domain (AICD) or the conversion of A β 43/A β 42 into A β 40/A β 38, respectively [2]. To confirm our results on a cell based level, we measured the A β peptides secreted in the medium by mouse embryonic fibroblasts expressing only one type of γ -secretase complex.

Results

PSEN2 containing complexes lower the overall activity of the γ -secretase, relative to the corresponding PSEN1 complexes. In contrast, APH1B-containing γ -secretase complexes did not change endopeptidase activity levels but reduce the efficiency of the carboxypeptidase-like

¹VIB Center for the Biology of Disease, Leuven, Belgium

Full list of author information is available at the end of the article

activity, when compared to the corresponding APH1 A-containing complexes. Interestingly, the effect observed in the APH1B-containing γ -secretase complexes is similar to the reported familial AD PSEN mutations (2) and suggests that APH1B-containing complexes are characterized by a more rapid product release, which explains why more longer and aggregation prone A β peptides are generated by APH1B complexes.

Conclusions

Taken all together our results show that the composition of the γ -secretase complex defines distinctive A β product profiles and supports that specific targeting of APH1Bcontaining γ -secretase complexes may represent a valid strategy in Alzheimer's disease therapy.

Authors' details

¹VIB Center for the Biology of Disease, Leuven, Belgium. ²Center for Human Genetics, KU Leuven, Leuven, Belgium.

Published: 13 September 2013

References

- Serneels L, Van Biervliet J, Craessaerts K, Dejaegere T, Horré K, Van Houtvin T, et al: Gamma-Secretase Heterogeneity in the Aph1 Subunit Relevance for Alzheimer's Disease. Science 2009, 324:639-642.
- Chavez-Gutierrez L, Bammens L, Benilova I, Vandersteen A, Benurwar M, Borgers M, et al: The mechanism of [gamma]-Secretase dysfunction in familial Alzheimer disease. *EMBO J* 2012, 31:2261-2274.

doi:10.1186/1750-1326-8-S1-P2

Cite this article as: Acx *et al.*: The composition of the γ -secretase complex defines its A β product profile. *Molecular Neurodegeneration* 2013 8(Suppl 1):P2.

© 2013 Acx et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.