

POSTER PRESENTATION

Open Access

Differential pathways for the interleukin-1 β production activated by chromogranin A and A β in microglia

Zhou Wu^{1*}, Hiroshi Nakanishi²

From Molecular Neurodegeneration: Basic biology and disease pathways

Cannes, France. 10-12 September 2013

Background

Although chromogranin A (CGA) is frequently present in Alzheimer's disease (AD) senile plaques associated with microglial activation, little is known about basic difference between CGA and fibrillar A β as neuroinflammatory factors. Here we have thus compared the interleukin-1 β (IL-1 β) production pathways by CGA and fibrillar A β in microglia.

Materials and methods

MG6 microglia and primary cultured microglia were used in this study. Microglia isolated from young and aged mouse brains by magnetic cell sorting using CD11b-conjugated microbeads were also used. Processings of pro-caspase-1 and pro-IL-1 β were analysed by immunoblottings. Secretion of IL-1 β was measured by ELISA. The frontal cortex of human brains from AD and no clinical evidence of dementia were used for immunohistochemical analyses.

Results

In cultured microglia, production of IL-1 β was induced by CGA, but not by fibrillar A β . CGA activated both nuclear factor-kB (NF-kB) and pro-caspase-1, whereas fibrillar A β activated pro-caspase-1 only. For the activation of pro-caspase-1, both CGA and fibrillar A β needed the enzymatic activity of cathepsin B (CatB), but only fibrillar A β required cytosolic leakage of CatB and the NLRP3 inflammasome activation [1,2]. In contrast, fibrillar A β induced the IL-1 β secretion from microglia isolated from the aged mouse brain. In AD brain, highly activated

microglia, which showed intense immunoreactivity for CatB and IL-1 β , surrounded CGA-positive plaques more frequently than A β -positive plaques.

Conclusions

These observations indicate differential pathways for the microglial IL-1 β production by CGA and fibrillar A β , which may aid in better understanding of pathological significance of neuroinflammation in AD.

Authors' details

¹Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan. ²Japan Science and Technology Agency, Core Research for Evolutional Science and Technology, 5, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.

Published: 13 September 2013

References

- Terada K, Yamada J, Hayashi Y, Wu Z, Uchiyama Y, Peters C, Nakanishi H: Involvement of catepsin B in the processing and secretion of interleikin-1β in chromogranin A-stimulated microglia. Glia 2010, 58:114-124
- Sun L, Wu Z, Hayashi Y, Peters C, Tsuda T, Inoue K, Nakanishi H: Microglial cathepsin B contributes to the initiation of peripheral inflammationinduced chronic pain. J Neurosci 2012, 32:11330-11342.

doi:10.1186/1750-1326-8-S1-P48

Cite this article as: Wu and Nakanishi: Differential pathways for the interleukin-1 β production activated by chromogranin A and A β in microglia. *Molecular Neurodegeneration* 2013 8(Suppl 1):P48.

¹Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan Full list of author information is available at the end of the article

