POSTER PRESENTATION

Tauopathy-induced retinal dysfunction in the P301S mutant human tau transgenic mouse

Nadia Mazzaro¹, Erica Barini¹, Michel Goedert², Maria Grazia Spillantini³, Paolo Medini¹, Laura Gasparini^{1*}

From Molecular Neurodegeneration: Basic biology and disease pathways Cannes, France. 10-12 September 2013

Intracellular inclusions made of microtubule-associated tau protein are a defining pathological hallmark of tauopathies, which include Alzheimer disease and familial frontotemporal dementia and parkinsonism linked to chromosome 17. Altered levels of tau protein have been detected in the retina and optic nerve of patients with glaucoma, suggesting that retina degeneration and tauopathies share similar pathogenic mechanisms. We have recently demonstrated that P301S mutant human tau (tau_{P301S}) mice develop tau filamentous inclusions and axonopathy in retinal ganglion neurons (RGCs), in the absence of neuronal loss or alterations in the outer retina. Moreover, we showed that tau_{P301S} transgenic retinal explants do not respond to neurotrophic stimuli in vitro. Here, we investigated the impact of tau pathology on RGC physiology in living animals and neurotrophin signaling pathways in vivo. In anesthetized 5-month old wild type (WT) and $tau_{\rm P301S}$ mice, we measured RGCs activity using pattern electroretinogram (pERG), which selectively detects RGC response upon pattern light stimuli exposure. In transgenic tau_{P301S} mice the amplitude of both P1 positive and N2 negative components of pERG at saturating contrast and spatial frequency was significantly smaller than WT values. Furthermore, retinal acuity was significantly reduced in tau_{P301S} mice. Using uniform flickers of light (flash ERG), we measured the activity of the outer retina and found that outer retina response was preserved in $tau_{\rm P301S}$ mice. Neurotrophins, and especially brainderived neurotrophic factor (BDNF), are important modulators of neuronal survival and function in the brain and in the visual system. We therefore investigated the BDNF signaling pathway and found that BDNF signalling was altered in tau_{P301S} transgenic retinas. Our

¹Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy

Full list of author information is available at the end of the article

results indicate that, in the tau_{P301S} mouse, tau pathology specifically impairs the activity of RGCs, without affecting the outer retina function and is associated with BDNF signalling alterations. Given the role of BDNF in synaptic plasticity, these data suggest that mild levels of tau pathology are sufficient to trigger significant neuronal dysfunction possibly through alteration of neurotrophic signalling. *Funded by a grant of Compagnia di San Paolo awarded to LG.*

Authors' details

¹Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy. ²MRC Laboratory of Molecular Biology, Cambridge, UK. ³Cambridge Centre for Brain Repair, University of Cambridge, UK.

Published: 4 October 2013

doi:10.1186/1750-1326-8-S1-P57 Cite this article as: Mazzaro *et al.*: Tauopathy-induced retinal dysfunction in the P301S mutant human tau transgenic mouse. *Molecular Neurodegeneration* 2013 8(Suppl 1):P57.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

) BioMed Central

Submit your manuscript at www.biomedcentral.com/submit

© 2013 Mazzaro et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.