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Genetic perturbations of disease risk genes
in mice capture transcriptomic signatures
of late-onset Alzheimer’s disease
Ravi S. Pandey1, Leah Graham2,3, Asli Uyar1, Christoph Preuss2, Gareth R. Howell2,3* and Gregory W. Carter1,2,3*

Abstract

Background: New genetic and genomic resources have identified multiple genetic risk factors for late-onset
Alzheimer’s disease (LOAD) and characterized this common dementia at the molecular level. Experimental studies in
model organisms can validate these associations and elucidate the links between specific genetic factors and
transcriptomic signatures. Animal models based on LOAD-associated genes can potentially connect common
genetic variation with LOAD transcriptomes, thereby providing novel insights into basic biological mechanisms
underlying the disease.

Methods: We performed RNA-Seq on whole brain samples from a panel of six-month-old female mice, each
carrying one of the following mutations: homozygous deletions of Apoe and Clu; hemizygous deletions of Bin1 and
Cd2ap; and a transgenic APOEε4. Similar data from a transgenic APP/PS1 model was included for comparison to
early-onset variant effects. Weighted gene co-expression network analysis (WGCNA) was used to identify modules
of correlated genes and each module was tested for differential expression by strain. We then compared mouse
modules with human postmortem brain modules from the Accelerating Medicine’s Partnership for AD (AMP-AD) to
determine the LOAD-related processes affected by each genetic risk factor.

Results: Mouse modules were significantly enriched in multiple AD-related processes, including immune response,
inflammation, lipid processing, endocytosis, and synaptic cell function. WGCNA modules were significantly
associated with Apoe−/−, APOEε4, Clu−/−, and APP/PS1 mouse models. Apoe−/−, GFAP-driven APOEε4, and APP/PS1
driven modules overlapped with AMP-AD inflammation and microglial modules; Clu−/− driven modules overlapped
with synaptic modules; and APP/PS1 modules separately overlapped with lipid-processing and metabolism modules.

Conclusions: This study of genetic mouse models provides a basis to dissect the role of AD risk genes in relevant
AD pathologies. We determined that different genetic perturbations affect different molecular mechanisms
comprising AD, and mapped specific effects to each risk gene. Our approach provides a platform for further
exploration into the causes and progression of AD by assessing animal models at different ages and/or with
different combinations of LOAD risk variants.
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Background
Alzheimer’s disease (AD) is the most common adult
neurodegenerative disorder and accounts for around
60–80% of all dementia cases [1]. Neuropathologically,
Alzheimer’s disease is generally characterized by the
presence of extracellular amyloid plaques composed of
amyloid-β (Aβ) surrounded by dystrophic neurites,
neurofibrillary tangles (NFTs), and neuronal loss [2, 3].
Clinically, AD is classified into two subtypes: early onset
with Mendelian inheritance, and late onset (or sporadic)
AD [1, 4]. Early-onset Alzheimer’s disease (EOAD)
strikes prior to the age of 65 and accounts for approxi-
mately 5% of all AD cases, while the much more com-
mon late-onset Alzheimer’s disease (LOAD) is diagnosed
at later life stages (> 65 years) [2, 5]. In comparison to
rare casual variants in three genes: amyloid precursor
protein (APP), presenilin 1 (PSEN1), and presenilin 2
(PSEN2) that contribute to EOAD [1, 6, 7], the genetics
factors influencing LOAD are complex due to the inter-
play of genetic and environmental factors that influence
disease onset, progression and severity [8, 9]. Before the
era of large-scale genome wide association studies, the
e4 allele of the apolipoprotein E (APOE) gene was the
only well-established major risk factor for LOAD, ac-
counting for about 30% of genetic variance [10, 11].
APOEε4 was inferred to have moderate penetrance [11]
with homozygous carriers having a roughly five-times-
increased risk compared to those who inherit only one
e4 allele of APOE [1, 12].
Identification of new AD-related genes is important

for better understanding of the molecular mechanisms
leading to neurodegeneration [7]. Genome-wide associ-
ation studies (GWAS) have identified dozens of add-
itional genetic risk loci for LOAD, with candidate genes
including clusterin (CLU), bridging integrator 1 (BIN1),
and CD2 associated protein (CD2AP) [1, 2, 7, 13]. These
novel risk genes cluster in functional classes suggesting
prominent roles in lipid processing, the immune system,
and synaptic cell function such as endocytosis [1, 14].
Although these risk variants are often of small effect
size, investigation of their functionality can reveal the
biological basis of LOAD [1].

Despite recent advances in genetic and genomic re-
sources to identify genetic risk factors, the disease mech-
anisms behind LOAD remain opaque. Most transgenic
animal models are based on rare, early-onset AD genes
which do not reflect the complete neuropathology or
transcriptomic signatures of LOAD [15]. Although these
transgenic mouse models were helpful to understand
early molecular changes underlying Aβ and tau path-
ology, the corresponding genetic factors only account
for a small fraction of AD. Thus, animal models based
on LOAD-associated genes are necessary to connect
common genetic variation with LOAD transcriptomes.
To better understand the molecular mechanism under-

lying LOAD, we performed transcriptome profiling and
analyses from brain hemispheres of 6 month old female
mice carrying mutations in LOAD-relevant genes Apoe,
Clu, Bin1, and Cd2ap. Weighted gene co-expression
network analysis identified several mouse modules signifi-
cantly driven by Apoe−/− and Clu−/− mouse strains. More-
over, we have compared mouse modules with human
postmortem brain modules from the Accelerating Medi-
cine’s Partnership for AD (AMP-AD) to determine the
AD relevance of risk genes. We observed enrichment of
multiple AD-related pathways in these modules such as
immune system, lipid metabolism, and neuronal system.
This study of LOAD-relevant mice provides a basis to
dissect the role of AD risk genes in AD pathologies.

Methods
Mouse strains and data generation
All mouse strains were obtained from The Jackson La-
boratory and maintained in 12/12-h light/dark cycle
(Table 1). All experiments were approved by the Animal
Care and Use Committee at The Jackson Laboratory.
RNA-Seq data were obtained from whole left hemi-
sphere brain samples from a panel of six-month-old fe-
male mice carrying one of the following mutations in
LOAD associated genes: homozygous deletion in Apoe
and Clu; heterozygous deletion in Cd2ap and Bin1; and
a transgenic APOEε4 driven by a GFAP promoter on a
Apoe−/− background (herein referred to as Apoe−/−, Clu−/−,
Cd2ap+/−, Bin1+/− and APOEε4) (Table 1, [16–21]). There

Table 1 Study population. Whole-brain left hemispheres were collected at 6 months of age from female mice

Model Genetic Construct JAX Strain name JAX Stock #

B6 none; control C57BL/6 J 000664

APOEε4 Homozygous transgene of human APOEε4
allele with GFAP promoter

B6.Cg-Apoetm1Un Cdh18Tg(GFAP-APOE_i4)1Hol/J 004631

Apoe−/− Homozygous gene knockout B6.129P2-Apoetm1Unc/J 002052

Clu−/− Homozygous gene knockout B6.Cg-Clutm1Jakh/J 005642

Bin1+/− Heterozygous gene knockout B6.129S6-Bin1tm2Gcp/J 021145

Cd2ap+/− Heterozygous gene knockout B6.129X1-Cd2aptm1Shaw/J 008907

APP/PS1 Homozygous transgenic B6.Cg-Tg (APPswe,PSEN1dE9) 85Dbo/Mmjax MMRC stock # 34,832-JAX
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were six biological replicates for each late-onset model and
control B6 mice. To minimize gene expression variation
between mice, all mice in experimental cohorts were bred
in the same mouse room and were aged together (to the
extent possible). Cohorts were generated either by inter-
crossing heterozygous mice or in the case of Bin1+/− and
Cd2ap+/− by crossing heterozygous mice to C57BL/6 J (B6)
mice, as homozygosity in these two genes is lethal. Data
were also included from five whole left hemisphere brain
samples from 6-month-old female mice from an early-
onset AD model (APP/PS1, Table 1) [22] as well as seven
additional B6 control replicates to account for batch effects.
For sample collection, mice were anesthetized with a

lethal dose of ketamine/xylazine, transcardially perfused
with 1X phosphate buffered saline (PBS), brains carefully
dissected and hemisected in the midsagittal plane. The
left hemisphere was snap frozen. RNA extraction was
performed using TRIzol (Invitrogen, cat #: 15596026) ac-
cording to manufacturer’s instructions. Total RNA was
purified from the aqueous layer using the QIAGEN miR-
Neasy mini extraction kit (QIAGEN) according to the
manufacturer’s instructions. RNA quality was assessed
with the Bioanalyzer 2100 (Agilent Technologies).
Poly(A) selected RNA-Seq sequencing libraries were
generated using the TruSeq RNA Sample preparation kit
v2 (Illumina) and quantified using qPCR (Kapa Biosys-
tems). Using Truseq V4 SBS chemistry, all libraries were
processed for 125 base pair (bp) paired-end sequencing
on the Illumina HiSeq 2000 platform according to the
manufacturer’s instructions.

Quality control of RNA-Seq data
Sequence quality of reads was assessed using FastQC
(v0.11.3, Babraham). Low-quality bases were trimmed
from sequencing reads using Trimmomatic (v0.33) [23].
After trimming, reads of length longer than 36 bases
were retained. The average quality score was greater
than 30 at each base position and sequencing depth were
in range of 35–40 million reads.

Read alignments and gene expression
All RNA-Seq samples were mapped to the mouse gen-
ome (assembly 38) using ultrafast RNA-Seq aligner
STAR (v2.5.3) [24]. First, a STAR index was built from
mm10 reference sequence (Ensembl Genome Reference
Consortium, build 38) for alignment, then STAR aligner
output coordinate-sorted BAM files for each sample was
mapped to mouse genome using this index. Gene ex-
pression was quantified in two ways, to enable multiple
analytical methods: transcripts per million (TPM) using
RSEM (v1.2.31) [25], and raw read counts using HTSeq-
count (v0.8.0) [26].

Differential expression analysis
Differential expression in mouse models was assessed using
Bioconductor package DESeq2 (v1.16.1) [27].. DESeq2 take
raw read counts obtained from HTSeq-count as input and
has its own normalization approach. The significance of dif-
ferential expression was determined by the Benjamini-
Hochberg corrected p-values. The threshold for significance
was set to an adjusted p = 0.05. We included batch as a co-
variate in DESeq2 analysis to account for batch effect.

Principal component analysis and batch correction
We analyzed 48 RNA-Seq samples originating from
three experimental batches: 1) all late-onset genetic
models (N = 36); 2) one biological replicate of the APP/
PS1 strain with seven biological replicates of B6 control
mice (N = 8); and 3) four additional biological replicates
of APP/PS1 (N = 4). First, we filtered out genes with
TPM less than 10 for more than 90% of samples and
then log-transformed to log2(TPM + 1) for downstream
analysis. We then used the plotPCA function of Biocon-
ductor package EDASeq [28] to observe the differences
in distribution of samples due to batch effects. Finally,
we implemented COMBAT [29] on above RNA-Seq
datasets to remove known batch effects.

Network construction and mouse module detection
Modules (clusters) of correlated genes were identified
using Weighted gene co-expression network analysis
(WGCNA) implemented in R [30]. We used the step-by-
step construction approach for network construction
and module identification, which allows customization
and alternate methods. The default unsigned network
type was used, and a soft thresholding power of 8 was
chosen to meet the scale-free topology criterion in the
pickSoftThreshold function [31]. For module identifica-
tion, WGCNA uses a topological overlap measure to
compute network interconnectedness in conjunction
with average linkage hierarchical clustering method.
Modules correspond to branches of resulting clustering
and are identified by cutting branches using dynamic
tree cutting. To avoid small modules and ensure separ-
ation, we set the minimum module size to 30 genes and
the minimum height for merging modules to 0.25. Each
module is represented by the module eigengene (ME), de-
fined as first principal component of the gene expression
profiles of each module. Further, we have carried out one-
way ANOVA (R function: aov) tests to determine differen-
tial expression between strains for each module eigengene.
Modules with significant (p < 0.05) strain differences were
analyzed for contributing strains using Tukey HSD (Tukey
Honest Significant Differences, R function: TukeyHSD)
for multiple pairwise-comparison between group means.
The reported p-values were adjusted for multiple compar-
isons with Benjamini-Hochberg false discovery rate.
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Functional enrichment analysis
Functional annotations and enrichment analysis were
performed using the R package clusterProfiler [32]. Gene
Ontology terms and KEGG pathways enrichment ana-
lysis were performed using functions enrichGO and
enrichKEGG, respectively, from the clusterProfiler pack-
age. The function compareCluster from this package was
used to compare enriched functional categories of each
gene module. The significance threshold for all enrich-
ment analyses was set to 0.05 using Benjamini-Hochberg
adjusted p-values.

Calculation and significance of Jaccard indices
Jaccard indices were computed to find overlap
strengths between mouse modules and AMP-AD hu-
man modules. The Jaccard index is measure of simi-
larity between sample sets and defined as ratio of size
of the intersection to the size of the union of two
sample sets. Further, to test the significance of the
Jaccard index for each pair of mouse-human module
overlap, we performed permutation analysis by ran-
dom sampling the equivalent number of genes in
each mouse module from the union of all genes in
the mouse modules. This was performed 10,000 times
to generate null distributions of Jaccard index values.
Cumulative p-values were then calculated empirically.

Mouse-human orthologous genes
Mouse-human orthologous genes were identified using
the genomic information on orthologous groups from
the latest ENSEMBL build for the human genome ver-
sion GRCh38. All orthologous gene relationships were
retrieved from BioMart based on the Ensembl Compara
Gene Tree comparison with the latest mouse genome
build (biomart.org). Phylogenetic gene trees represent
the evolutionary history of distinct gene families,
which evolved from a common ancestor. Reconcili-
ation of these gene trees against the mouse genome
was used to distinguish duplication and speciation
events across species, thus inferring distinct ortholo-
gue and paralogue gene pairs based on the method
inferred by Cunningham et al. [33].

Transcription factor analyses
Transcription factors in mouse module were identified
using iRegulon (v1.3) [34] in Cytoscape (v3.2.0) [35] and
the Enrichr webtool that contains ENCODE and ChEA
consensus transcription factor annotations from Chip-X
library [36].

Human post-mortem brain cohorts and co-expression
module identification
Whole-transcriptome data for human post-mortem brain
tissue was obtained from the Accelerating Medicines

Partnership for Alzheimer Disease-(AMP-AD) consor-
tium, which is a multi-cohort effort to harmonize gen-
omics data from human LOAD patients. Harmonized
co-expression modules from the AMP-AD data sets
were obtained from Synapse (DOI: https://doi.org/10.
7303/syn11932957.1). The human co-expression mod-
ules derive from three independent LOAD cohorts,
including 700 samples from the ROS/MAP cohort,
300 samples from the Mount Sinai Brain bank and
270 samples from the Mayo cohort. A detailed descrip-
tion on post-mortem brain sample collection, tissue
and RNA preparation, sequencing, and sample QC has
been provided elsewhere [37–39]. As part of a
transcriptome-wide meta-analysis to decipher the mo-
lecular architecture of LOAD, 30 co-expression mod-
ules from seven different brain regions across the three
cohorts have been recently identified [40]. Briefly, Logs-
don et al. identified 2978 co-expression modules using
multiple techniques across the different regions after
adjusting for co-variables and accounting for batch effects
(https://doi.org/10.7303/syn10309369.1). A total of 660
co-expression modules were selected based on a specific
enrichment in LOAD cases when compared to controls
(https://doi.org/10.7303/syn11914606). Finally, multiple
co-expression module algorithms were used to identify a
set of 30 aggregate modules that were replicated by the
independent methods [40].

Correlation analysis
Standard gene set overlap tests are quick and easy, but
do not account for direction of gene expression changes
or coherence of changes across all genes in a module.
To assess the directionality of genetic variants in model
mice, we have computed the Pearson correlation across
all genes in a given AMP-AD modules to determine
human-mouse concordance.
To determine the effects of each genetic variant, we fit

a multiple regression model as:

log exprð Þ ¼ β0 þ
X

i
βi þ ε

Where i denotes the genetic variants (Apoe−/−, APOEε4,
APP/PS1, Bin1+/−, Cd2ap+/−, and Clu−/−), and expr rep-
resents gene expression measured by RNA-Seq tran-
scripts per million (TPM).
We have computed the Pearson correlation between

log fold change gene expression in human AD cases ver-
sus controls (Log2FC (AD/controls) and the effect of
each mouse perturbation as determined by the linear
model (β) for the mouse orthologs genes within an
AMP-AD module. Log2FC values for human transcripts
were obtained via the AMP-AD knowledge portal
(https://www.synapse.org/#!Synapse:syn11180450).
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Correlation coefficients were computed using cor.test
function built in R as:
cor.test (log2FC (AD/control), β).
cor.test returns both the correlation coefficient and

the significance level (p-value) of the correlation. Result-
ing p-values were corrected for multiple hypothesis test-
ing using the Benjamini-Hochberg (BH) procedure.

Results
Expression of target genes was modified by genetic
perturbations
First, we have examined the relative expression (compared
to control B6 mice) of LOAD associated genes to validate
each strain. Expression of the mouse Apoe gene was
downregulated in Apoe−/− mice (p < 1.00 × 10− 60) as well
as in transgenic APOEε4 (p < 1.00 × 10− 258) mice, which
harbor human APOE4 transcript driven by the GFAP pro-
motor (Fig. 1a). Expression of Clu gene was also downreg-
ulated (p < 1.00 × 10− 30) in Clu−/− mice, while change in
the expression of Bin1 was significant but very small
(log2FC = − 0.3; p = 8.72 × 10− 12) in Bin1+/− mice (Fig. 1a).
The change in expression of Cd2ap gene was not signifi-
cant (log2FC = − 0.07; p = 0.7) in Cd2ap+/− mice (Fig. 1a).
Overall, in each mouse strain, we observed significant
downregulation in the expression of respective LOAD
associated gene except in Cd2ap+/− models.

Transcriptional signatures from mice carrying different
mutations in LOAD-relevant genes clustered into different
groups by PCA
Principal component analysis (PCA) was performed on
batch-corrected, log-transformed, and mean-centered
TPM for 10,704 genes (Methods). The first principal
component accounted for 13% of total variance and sep-
arated models of different types of AD: LOAD associated
models and EOAD associated APP/PS1 transgenic
models cluster separately (Fig. 1b), and thus might be af-
fecting different AD-related processes. In other hand,
within LOAD associated models, samples from the
Clu−/− mice grouped together and separately from all
other LOAD associated models in the second principal
component (10% of variance) (Fig. 1b). Across all strains,
APOEε4 transgenic and Apoe−/− mice were most similar
to each other (Fig. 1b). Hemizygous Bin1+/−, and
Cd2ap+/− mice grouped closely to each another, suggest-
ing functional similarity, and were the mutant strains in
closest proximity to control (B6) mice (Fig. 1b).

Pathway analysis of differentially expressed genes
identifies enrichment of different LOAD-related pathways
in each mouse model
A total of 120 genes were significantly differentially expressed
(p < 0.05) in APOEε4 transgenic mice, out of which 57 genes
were upregulated and 63 genes were downregulated (Table 2;

Additional file 1: Table S1). We did not observe any pathway
enrichment for differentially expressed genes in APOEε4
transgenic mice. In Apoe−/− mice, 219 genes were identified
significantly differentially expressed (p < 0.05), 154
genes were upregulated and 65 genes were downregu-
lated (Table 2; Additional file 1: Table S1). Inflamma-
tion/immune response related pathways were enriched
in the upregulated list of DE genes in Apoe−/− mice
(Additional file 2: Table S2), as well as osteoclast dif-
ferentiation that is related to TREM2 and TYROBP.
We did not observe any enrichment for downregu-
lated genes in Apoe−/− mice. In Clu−/− mice, a total
of 1759 genes were identified significantly differen-
tially expressed (762 genes were upregulated and 997
genes were downregulated) (p < 0.05; Table 2; Add-
itional file 1: Table S1). Pathway analysis of DE genes
identified spliceosome, RNA transport, and ubiquitin
mediated proteolysis as enriched pathways in down-
regulated genes of Clu−/− mice, while notch signaling
as the enriched pathway in upregulated genes of
Clu−/− mice (Additional file 2: Table S2). Only 16
and 34 genes were significantly differentially expressed
(p < 0.05) in Bin1+/− and Cd2ap+/− mice, respectively
(Table 2; Additional file 1: Table S1). Pathway ana-
lysis identified endocytosis, phagosome, autoimmune,
type I diabetes as enriched pathways in downregu-
lated genes of Cd2ap+/− mice (Additional file 2: Table
S2), while there was no pathway enrichment in upreg-
ulated genes of Cd2ap+/− mice. Downregulated genes
of Bin1+/− mice were enriched in endocytosis and FC
gamma R-mediated phagocytosis pathways (Additional
file 2: Table S2). In the APP/PS1 transgenic mice, 250
genes were differentially expressed (67 and 183 genes
were up and downregulated, respectively) (Table 2). Pathway
analysis of these DE genes identified ribosome, oxidative
phosphorylation, and Alzheimer’s disease as significantly
enriched pathways (Additional file 2: Table S2).

Co-expression network analysis identified mouse modules
enriched for multiple LOAD-related pathways driven by
APOE and CLU strains
Weighted gene co-expression network analysis (WGCNA)
[30] identified 26 distinct modules of co-expressed genes
(Fig. 2a, Additional file 3: Table S3). Further, we have car-
ried out one-way ANOVA test followed by Tukey-HSD
(see methods) to determine if there was differential ex-
pression between strains for each module eigengene. We
identified that 13 out of 26 modules were significantly
driven by one or more of Apoe−/−, APOEε4, Clu−/−,
and APP/PS1 models (Additional file 3: Table S3).
Pathway enrichment analysis identified that multiple
AD-related pathways were significantly enriched in
these mouse modules. Apoe−/− mice were significantly
associated with ivory module (N = 64, p = 9.7 × 10− 6),
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Fig. 1 (See legend on next page.)
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while the skyblue3 (N = 80, p = 4.6 × 10− 13) (Fig. 3;
Fig. 4; Additional file 3: Table S3) module were sig-
nificantly associated with both Apoe−/− and APOEε4
strains. Pathway analysis identified that the ivory mouse
module was enriched in inflammation and microglia related
pathways such as osteoclast differentiation, staphylococcus
aures infection, phagosome, and endocytosis (Fig. 2b), im-
plicating an important role of Apoe in inflammatory and
microglia related functions [41–43]. Brown (N = 1778, p =
3.1 × 10− 7), lightcyan1 (N = 1206, p = 1.9 × 10− 5), black
(N = 685, p = 2.0 × 10− 2), plum1 (N= 80, p = 1.0 × 10− 2),
and brown4 (N = 55, p = 0.04) modules were significantly
associated with Clu−/− (Fig. 3; Fig. 4; Additional file 3:
Table S3). The steelblue module was driven by both
Clu−/− (p = 5.02 × 10− 13) and Cd2ap+/− models (p = 9.5 ×
10− 13) (Fig. 3; Fig. 4; Additional file 3: Table S3). These
mouse modules were enriched in many different pathways
particularly related to synaptic cell function, endocytosis,
and RNA transport (Fig. 2b). This suggest the role of
Clu gene in synaptic/neuronal related functions, which
is in consistent with findings that reduced expression of Clu
may results to aberrant synaptic development and neurode-
generation [44]. The darkorange2 (N= 61, p = 1.0 × 10− 6),
darkorange (N= 312, p= 0.03), orange (N= 142, p= 4.64 ×
10− 13), and lightgreen (N= 1456, p = 1.0 × 10− 12) modules
were found to be driven by APP/PS1 (Fig. 3; Fig. 4; Add-
itional file 3: Table S3). The lightyellow module (N= 163)
was observed to be associated with both APP/PS1 (p= 8.7 ×
10− 5) and Clu−/− mice (p= 1.4 × 10− 2), but more significantly
with APP/PS1 (Fig. 3; Fig. 4; Additional file 3: Table S3).
APP/PS1-driven modules (lightyellow, lightgreen, darkor-
ange2) were enriched in lipid-processing and metabolism re-
lated pathways (Fig. 2b). None of the modules were observed
to be associated with Bin1+/− and Cd2ap+/− mice alone.

Comparison of mouse and AMP-AD modules
Finally, we compared mouse modules with the 30 human
postmortem brain modules from the Accelerating Medi-
cine’s Partnership for AD (AMP-AD). We computed Jac-
card indices and its significance for each mouse - human
module pair to identify which mouse module significantly
overlap with human modules in order to identify AD-
relevance of risk genes (Additional file 5: Table S5). Since
each human module was derived from a specific brain re-
gion and study cohort, there are significant similarity be-
tween AMP-AD modules. Overlapping modules were
therefore grouped into Consensus Clusters [40].

Apoe-driven mouse module overlapped with AMP-AD
inflammation and microglial consensus cluster
The ivory mouse module driven by Apoe−/− significantly
overlapped with AMP-AD inflammation and microglia
modules in Consensus Cluster B [40] (Fig. 4; p < 0.05)
and ranked among top ten mouse-human modules over-
lap (based on Jaccard indices) (Additional file 4: Table
S4). These findings imply the significant role of Apoe in
inflammation and microglia-related pathways. Further-
more, we identified that 22 genes were present in all
AMP-AD microglial modules in Consensus Cluster B as
well as in the Apoe−/−-driven ivory module (Fig. 5), as
these genes were expressed from all human brain re-
gions and therefore might be playing the important role
in inflammation and microglia associated pathways. In
order to identify transcriptional changes in these genes
due to any AD-relevance genetic alteration, we assessed
differential expression of these 22 genes in each mouse
model (Additional file 1: Table S1). Nine out of these 22
genes (TREM2, CSF1R, C1QA, C1QB, C1QC, PTGS1,
AIF1, LAPTM5 and LY86) were significantly upregulated
(p < 0.05) in Apoe−/− mice and one gene (TYROBP) was
significantly downregulated (p < 0.05) in Clu−/− mice.
Some of these genes (TREM2, TYROBP, C1QA, and
CSF1R) have been associated with AD and reported to be
potential drug targets (https://agora.ampadportal.org/).
We did not find a significant overlap between the skyblue3
mouse module and any AMP-AD module.

Clu-driven modules overlapped with AMP-AD neuronal
system consensus cluster
Clu−/−-driven mouse modules (brown, lightcyan1, and
plum1) prominently overlapped with AMP-AD neuronal

(See figure on previous page.)
Fig. 1 Expression of LOAD associated genes in mice. a Expression of AD associated risk genes in LOAD-relevant mice and the APP/PS1 transgenic
model compared to B6 (control) mice. X-axis shows AD-associated risk genes and Y-axis represents average log fold change expression of above
genes in genetically perturbed mice compare to controls. b Principal component analysis of batch corrected RNA-seq data from mouse strains.
The APOEε4 (red circle) and Apoe KO (green circle) samples are most similar to each other. Samples from mice carrying only one copy of either
Bin1 (magenta circle) or Cd2ap (orange circle) occupy similar regions, which might be due to their related functions. APP/PS1 samples (brown
circle) were separated from mice with late-onset perturbations by the first PC

Table 2 Differentially expressed genes by strain. Number of
differentially expressed genes identified in each mouse strain
compared to control mice (B6)

Mouse Model Upregulated Downregulated

APOEε4 57 63

Apoe−/− 154 65

Clu−/− 762 997

Bin1+/− 10 6

Cd2ap+/− 21 13

APP/PS1 67 183
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Fig. 2 Mouse Modules Identified through WGCNA. a Twenty-six distinct mouse modules were identified from 10,704 mouse genes using
WGCNA. Mouse modules of various sizes represented by different color names. b KEGG Pathway enrichment analysis (p < 0.05) in mice using
enrichKEGG function build under clusterprofiler R package
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Fig. 3 Mouse Modules Significantly driven by specific mouse strains. Expression of module eigengenes in mouse modules significantly driven by
Apoe−/−, APOEε4, Clu−/− and APP/PS1 mice (arbitrary units)
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system modules in Consensus Cluster C [40], while
black, lightcyan1, and brown modules overlapped with
organelle biogenesis associated AMP-AD modules in
Consensus Cluster E (Fig. 4; p < 0.05). The Clu−/−-driven
brown4 module showed association with cell cycle
associated AMP-AD modules in Consensus Cluster D
(Fig. 4; p < 0.05). Also, we have observed that the top five
mouse-human module overlaps (based on Jaccard indi-
ces) were between the brown module and AMP-AD
neuronal system modules in Consensus Cluster C (Add-
itional file 4: Table S4). Further, we also identified that
122 genes were common between the Clu−/−-driven
brown mouse module and all AMP-AD neuronal system
modules in Consensus Cluster C (Fig. 5b). We assessed
these 122 genes for differential expression in each mouse
strain (Additional file 1: Table S1) and found that 35 out
of these 122 genes were differentially expressed (30
genes were upregulated and 5 genes were downregu-
lated) only in Clu−/− mice, while three out of these 122
genes were differentially expressed only in APP/PS1
transgenic mice (one gene was upregulated and two
were downregulated). One of these 122 genes (Syt7) was
upregulated in both Clu−/− mice and the APP/PS1 trans-
genic mice. These finding support the likely role of CLU
in neuronal function.

APP/PS1-driven modules overlapped with inflammation,
lipid-processing, and metabolism AMP-AD modules
The APP/PS1-driven orange and darkorange modules over-
lapped with lipid processing and metabolism associated

AMP-AD modules in Consensus Cluster E, the lightgreen
module overlapped with immune system modules Consen-
sus Cluster B, and the lightyellow module overlapped with
both microglia and organelle biogenesis related AMP-
AD modules in Consensus Clusters B and E, respect-
ively (Fig. 4; p < 0.05). We found significant overlap for
the darkorange2 mouse module with AMP-AD modules
in Consensus Cluster E, which are in turn enriched in
organelle biogenesis related pathways (Fig. 4; p < 0.05).

Correlation analysis provides directional coherence
between mouse models and AMP-AD consensus clusters
The gene set overlap analysis identified mouse modules
that are significantly overlapped with AMP-AD modules,
but it does not assess directional coherence between
AMP-AD modules and the effects of genetic perturba-
tions in mice. To address this issue, we computed the
Pearson correlation between log fold change gene ex-
pression in human AD cases versus controls (Log2FC)
and the effect of each mouse perturbation on mouse
orthologs as determined by the linear model (β) for the
genes within an AMP-AD module. Apoe−/− and APOEε4
mice showed significant positive correlation (r = 0.1–0.3,
p < 0.05) with immune associated AMP-AD modules in
Consensus Cluster B and significant negative correlation
(r = − 0.05, p < 0.05) with AMP-AD neuronal modules in
Consensus Cluster C (Fig. 6). Furthermore, Clu−/− and
Cd2ap+/− mice showed significantly positive association
(r = 0.1, p < 0.05) with AMP-AD neuronal modules in
Consensus Cluster C and negative correlation (r = − 0.15,

Fig. 4 Overlaps between strain-associated mouse modules and human AMP-AD modules. a Mouse modules significantly driven by one or more
of Apoe−/−, APOEε4, APP/PS1, Cd2ap+/− and Clu−/− mouse strains. The horizontal scale bar represents the average eigengene expression of mouse
strains in mouse modules. b Overlaps between mouse modules and 30 human AMP-AD modules. The vertical scale bar represents Jaccard
indices between mouse modules and AMP-AD modules. Jaccard indices were computed between each mouse and AMP-AD human modules
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Fig. 5 Overlaps between AMP-AD and key mouse modules: a Overlap between AMP-AD microglia modules in Consensus Cluster B and Apoe−/−-
driven ivory module (shown in blue). We identified 22 genes which were present in all AMP-AD microglia modules in Consensus Cluster B and
the mouse ivory module (red vertical bar). b Overlap between AMP-AD neuronal modules in Consensus Cluster C and Clu−/− driven brown
module (shown in blue). We identified 122 genes which were present in all AMP-AD neuronal modules in Consensus Cluster C and mouse
brown module (red vertical bar)
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p < 0.05) with AMP-AD immune related modules in
Consensus Cluster B (Fig. 6). Bin1−/− and APP/PS1
mice showed significant positive correlation (r = 0.1–
0.2, p < 0.05) with AMP-AD immune response associ-
ated modules in Consensus Cluster B as well as AMP-
AD neuronal modules in Consensus Cluster C. The cell
cycle and RNA non-mediated decay pathways enriched
AMP-AD modules in Consensus Cluster D were signifi-
cantly negatively correlated (r = − 0.2, p < 0.05) with
Apoe−/−, APOEε4, Clu−/−, Cd2ap+/, and APP/PS1 mice,
but Bin1+/− mice showed significant positive correlation
(r = 0.11, p > 0.05) with AMP-AD cell cycle module in
the cerebellum (Fig. 6). Most of the AMP-AD modules
in Consensus Cluster E that is enriched for organelle
biogenesis associated pathways showed significant nega-
tive correlation (r = − 0.1, p < 0.05) with all strains except
the Apoe−/− models (r = 0.12, p < 0.05), while the AMP-
AD modules of Consensus Cluster E in the frontal pole
(FPbrown) and parahippocampal gyrus (PHGblue) showed
significant positive association (r = 0.05–0.2, p < 0.05) with
all strains (Fig. 6).

Apoe-associated modules are enriched in SPI1 regulatory
targets
Transcription regulation play an important role in the
initiation and progression of AD [45]. Our results pro-
vide evidence of the AD relevance of risk genes, but it is
also important to identify the regulatory elements and
transcriptional factors that regulate the expression of
these genes for molecular dissection of disease etiology
[45, 46]. Recent study have shown that APOEε4 geno-
type suppress transcription of autophagy mRNA’s by
competing with transcription factor EB for binding
to coordinated lysosomal expression and regulation(-
CLEAR) DNA motifs [47]. TFs were identified for

each module with high normalized enrichment scores
(NES ≥ 4) from iRegulon (Methods), which correspond to
an estimated false discovery rate of less than 0.01 [34]
(Additional file 5: Table S5). The SPI1 transcription factor
was enriched for regulatory targets in the Apoe−/− driven
ivory and skyblue3 modules (Table S6). It has been previ-
ously reported that SPI1 responds to inflammatory signals
and regulates genes that can contribute to neurodegenera-
tion in AD [48]. We also observed that transcription
factors from ELF, ETS, TCF, PEA3, GABP, and ERF sub-
family of the E26 transformation-specific (ETS) family
were enriched in the Clu−/−-driven modules (Additional
file 5: Table S5). ETS-domain proteins play a role in the
regulation of neuronal functions [49]. ETS family mem-
bers ELK1 and ETS1 have been reported to expressed in
neuronal cells and activate transcription of early onset AD
candidate gene PSEN1 [45, 46]. This transcription factor
analysis was based solely on bioinformatics and general
data resources, and therefore require experimental valid-
ation in specific AD-related contexts. Nevertheless, under-
standing the role of these and other transcription factors
in regulating AD associated genes can provide a molecular
basis for potential therapeutic development.

Conclusions
In this study, we have performed transcriptomic analysis
of mouse strains carrying different mutations in genes
linked to AD by GWAS to better understand the genetics
and basic biological mechanisms underlying LOAD. We
have also performed a comprehensive comparison at the
transcriptomic level between mouse strains and human
postmortem brain data from LOAD patients. This study
of LOAD-relevant mouse models provides a basis to dis-
sect the role of AD risk genes in relevant AD pathologies.
We determined that different genetic perturbations affect

Fig. 6 Correlation between mouse strains and 30 AMP-AD modules. Pearson correlation coefficients between 30 human AMP-AD modules and
mouse strains. AMP-AD modules are grouped into five previously-identified consensus clusters describing the major functional groups of AD-
related alterations. The vertical axis represents AMP-AD modules and the horizontal axis represents mouse strains. Positive correlations are shown
in blue and negative correlations in red color. Color intensity and size of the circles are proportional to the correlation coefficient. Correlations
with adjusted p-value > 0.05 are considered non-significant and not included
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different molecular mechanisms underlying AD, and
mapped specific effects to each risk gene. In our study, we
observed that Apoe−/− and Clu−/− mice at the relatively
early age of 6 months show transcriptomic patterns simi-
lar to human AD cases. Pathway analysis suggested that
Apoe−/− driven mouse modules specifically affect inflam-
mation/microglia related pathways, while Clu−/− driven
mouse modules have affected neurosignaling, lipid trans-
port, and endocytosis related pathways. These findings
suggest that APOE and CLU risk genes are associated with
distinct AD-related pathways. We have also identified that
22 genes were co-expressed in the Apoe−/−-driven ivory
mouse module and in AMP-AD modules from all human
brain regions in Consensus Cluster B that were enriched
in inflammation and microglia associated pathways. Fur-
ther, some of these genes (Tyrobp, Trem2, and Csf1r) were
differentially expressed in Apoe−/− mice. Previous stud-
ies have already implicated the role of TREM2 in AD
susceptibility due to association of heterozygous rare
variants in TREM2 with elevated risk of AD [50] and
higher cortical TREM2 RNA expression with increased
amyloid pathology [51]. TYROBP has been also previ-
ously reported as key regulator of immune/microglia
associated pathways, which is strongly associated with
LOAD pathology [14]. These genes have been also pro-
posed as potential drug targets (https://agora.ampad-
portal.org/) and our findings supports the role of these
genes with pathophysiology of LOAD.
Correlation analysis also identified that mice carrying

different mutations capture distinct transcriptional signa-
tures of human LOAD. Moreover, we have observed con-
trasting correlations of APOEε4, Apoe−/−, and Clu−/− mice
with AMP-AD modules, implicating that these genetic per-
turbations might affect LOAD risk through different physio-
logical pathways. It has been speculated that absence of both
Apoe and Clu resulted in accelerated disease onset, and
more extensive amyloid deposition in the PDAPP transgenic
mice brain [52]. Furthermore, APOE and CLU proteins
interact with amyloid-beta (Aβ) and regulates its clearance
from brain. In particular, the presence of CLU and the
APOEε2 allele promotes Aβ clearance from brain, whereas
APOEε4 reduces the clearance process [44]. These observa-
tions also suggest a protective role of CLU [44, 53, 54], con-
sistent with our transcriptome-based anti-correlation of
Clu−/− mice LOAD modules (Fig. 6). Understanding of the
complex interaction between these genes is essential to in-
terpret molecular mechanisms underlying AD. Hence, it
would be interesting to analyze mice models carrying differ-
ent combinations of genetic variants.
We did not observe any striking responses in brain gene

expression patterns in APOEε4, Bin1+/−, and Cd2ap+/−

mice based on the small subset of differentially expressed
genes, as opposed to effects observed in the Clu−/− and
Apoe−/− models (Table 2). Nor did we observe any mouse

modules significantly driven by these perturbations alone.
We note that these models were limited to heterozygous
mutations in Bin1 and Cd2ap and astrocyte-specific
expression of APOEε4. The latter limitation may be insuf-
ficient to capture the role of APOE variants in microglia
and disease risk [55]. However, our human-mouse com-
parison revealed significant correlation of these mouse
models with multiple human-derived AMP-AD co-
expression modules. We interpret this as these models
expression global changes relevant to human cases, while
few individual gene expression changes are large enough
to be captured by differential expression analysis. This
may suggest region-specific and/or cell-specific signals
that are diluted by our bulk whole-brain analysis. We have
observed that Bin1+/− models were significantly associated
with multiple AMP-AD co-expression modules, which in
turn were enriched in immune response, inflammation,
and synaptic functioning pathways, which is in concord-
ance with other studies [56, 57]. Furthermore, Cd2ap+/−

mice captured similar human AD signatures as Clu−/−

mice, it may be due to their involvement in similar path-
ways like blood-brain carrier, and loss of function in
Cd2ap may contribute to genetic risk of AD by facilitating
age related blood-brain barrier breakdown [58]. In-depth
investigation of the functional variants of these high-risk
AD genes will be essential to evaluate their role in LOAD
onset and progression.
The molecular mechanisms of AD driven by rare mu-

tations in APP, PSEN1, and PSEN2 are relatively well
understood, but the functional impact of LOAD associ-
ated risk factors still remain unclear. Although early-
onset models have provided critical insights into amyloid
accumulation, pathology, and clearance, they do not re-
flect the full transcriptomic signatures and complete
neuropathology of LOAD. Indeed, the primary transcrip-
tomic signatures from mice carrying major early-onset
and late-onset genetic factors are distinct (Fig. 1b), al-
though our functional analysis in the context of human
disease modules also detected some common neuroim-
mune effects (Fig. 6). Many of these differences are likely
due to the presence of amyloid deposition in APP/PS1
mice that drives gene expression signatures [22]. In this
context, the common neuroimmune response suggests
similar signatures arising in the absence of amyloid. It
therefore remains unclear whether the relatively uncom-
mon EOAD cases and the more common late-onset AD
cases proceed through similar disease mechanisms. Un-
derstanding these distinctions motivates the develop-
ment and characterization of new models for the late
onset of AD. In this study, we have analyzed mice carry-
ing alterations in LOAD candidate genes and found that
different AD risk genes are associated with different AD-
related pathways. Our approach provides a platform for
further exploration into the causes and progression of
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LOAD by assessing animal models at different ages and/
or with different combinations of LOAD risk variants.
This study highlighted that implementing state-of-the-
art approaches to generate and characterize LOAD-
associated mouse models might be helpful to identify
variants and pathways to understand complete AD
mechanisms and ultimately develop effective therapies
for AD.
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