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Abstract

Background: Alzheimer’s disease (AD) is a fatal neurodegenerative disease. APOE4 is the greatest genetic risk factor
for AD, increasing risk up to 15-fold compared to the common APOE3. Importantly, female (♀) APOE4 carriers have
a greater risk for developing AD and an increased rate of cognitive decline compared to male (♂) APOE4 carriers.
While recent evidence demonstrates that AD, APOE genotype, and sex affect the gut microbiome (GM), how APOE
genotype and sex interact to affect the GM in AD remains unknown.

Methods: This study analyzes the GM of 4-month (4 M) ♂ and ♀ E3FAD and E4FAD mice, transgenic mice that
overproduce amyloid-β 42 (Aβ42) and express human APOE3+/+ or APOE4+/+. Fecal microbiotas were analyzed using
high-throughput sequencing of 16S ribosomal RNA gene amplicons and clustered into operational taxonomic units
(OTU). Microbial diversity of the EFAD GM was compared across APOE, sex and stratified by APOE + sex, resulting in
4-cohorts (♂E3FAD, ♀E3FAD, ♂E4FAD and ♀E4FAD). Permutational multivariate analysis of variance (PERMANOVA)
evaluated differences in bacterial communities between cohorts and the effects of APOE + sex. Mann-Whitney tests
and machine-learning algorithms identified differentially abundant taxa associated with APOE + sex.

Results: Significant differences in the EFAD GM were associated with APOE genotype and sex. Stratification by
APOE + sex revealed that APOE-associated differences were exhibited in ♂EFAD and ♀EFAD mice, and sex-
associated differences were exhibited in E3FAD and E4FAD mice. Specifically, the relative abundance of bacteria
from the genera Prevotella and Ruminococcus was significantly higher in ♀E4FAD compared to ♀E3FAD, while the
relative abundance of Sutterella was significantly higher in ♂E4FAD compared to ♂E3FAD. Based on 29 OTUs
identified by the machine-learning algorithms, heatmap analysis revealed significant clustering of ♀E4FAD separate
from other cohorts.

Conclusions: The results demonstrate that the 4 M EFAD GM is modulated by APOE + sex. Importantly, the effect of
APOE4 on the EFAD GM is modulated by sex, a pattern similar to the greater AD pathology associated with
♀E4FAD. While this study demonstrates the importance of interactive effects of APOE + sex on the GM in young AD
transgenic mice, changes associated with the development of pathology remain to be defined.
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Background
The gut microbiome (GM), the collective genome of
gastrointestinal bacteria, is an integral component of hu-
man physiology [1–5]. Recent studies link dysbiotic GM
profiles with neurological disorders, with multiple scler-
osis the first identified [6–12]. While subsequent studies
have linked dysbiosis with Alzheimer’s disease (AD)
pathology [13–22], the effects of AD risk factors, specif-
ically APOE genotype, sex and their interaction, on the
GM remain unclear.
The APOE4 genotype is the greatest genetic risk factor

for AD, increasing risk up to 15-fold compared to the
more common APOE3 genotype [23, 24]. Apolipoprotein
E (apoE) is a member of the apolipoprotein family, the
protein components of lipoproteins. Both humans and
AD transgenic (−Tg) mice with APOE4 exhibit an in-
crease in amyloid-β (Aβ) peptide accumulation, both as
amyloid plaques, a hallmark of the disease, and small
soluble aggregates. Thus, one explanation for the
APOE4-associated AD risk is a loss of function in Aβ
clearance. Tran and colleagues demonstrated significant
differences between the GM of human APOE3 and
APOE4 carriers, as well as differences between the GM
of APOE3 and APOE4 targeted replacement (−TR) mice
[25]. These differences were attributed to a loss of apoE4
function in lipid homeostasis, as APOE4 is associated
with higher levels of cholesterol, triglycerides and low-
density lipoproteins compared to APOE3 [26–29],
changes that significantly affect the GM [30–37]. Sex is
another risk factor for AD as females (♀) exhibit almost
two-fold greater lifetime AD risk compared to males (♂)
[38]. Additionally, sex plays an important role in the
GM as the bacterial composition and metabolic function
differ significantly between ♂ and ♀ [37, 39–46]. Im-
portantly, ♀APOE4 carriers have a greater lifetime risk
for developing AD, an increased rate of cognitive decline
and an accelerated accumulation of Aβ compared to
♂APOE4 carriers [47–61]. While the underlying mech-
anism is unclear, evidence suggests this interaction mod-
ulates the GM.
EFAD-Tg mice [62] overexpress Aβ42 via five familial

AD (FAD) mutations [63] and express h-APOE3 or
APOE4, allowing for the study of the interaction among
AD risk factors [64–66]. EFAD mice expressing the
APOE4+/+ genotype (E4FAD), compared to E3FAD mice,
exhibit increased behavioral deficits, Aβ deposition and
neuroinflammation. Importantly, these differences are
reproduced in ♀ vs ♂EFAD mice, resulting in 4
pathologically-distinct cohorts when the EFAD mice are
stratified by APOE + sex (♀E4FAD >♂E4FAD =♀
E3FAD >♂E3FAD), a phenotype that develops with age
[65, 66]. For this study, we focused on 4M EFAD mice
to evaluate the interactive effects of APOE + sex on the
GM at an age prior to, or early in, the development of

pathology. Microbial analysis of fecal samples demon-
strated that APOE + sex have a significant effect on the
GM at various taxonomic levels.

Methods
Mouse model
As previously described, the EFAD (5xFAD+/−/APOE+/+)
mice are homozygous for APOE2, APOE3, or APOE4
and heterozygous for the 5x familial AD (5xFAD) muta-
tions [62, 63]. Although APOE2 is considered neuropro-
tective, 100% of APOE2+/+ mice have type III
hyperlipoproteinemia, compared to only 15% of human
ε2/2 carriers [67–69]; thus, E2FAD mice were excluded
from the current study. At 4M, fecal samples were ob-
tained from the 4 cohorts (9 ♂E3FAD, 8 ♂E4FAD, 19
♀E3FAD, 12 ♀E4FAD) by individually placing mice in
clean disposable Styrofoam cups. Feces were flash frozen
and stored at − 80 °C until DNA isolation.

Bacteria identification
Fecal DNA was isolated using a PowerSoil DNA isola-
tion kit (Mo Bio Laboratories) and DNA concentrations
determined by UV absorbance (Nanodrop, Thermo-
Fisher). The V4 variable region of 16S ribosomal RNA
gene was PCR-amplified using target-specific primers
containing bar codes and linker sequences [70]. PCR re-
action conditions included an initial denaturation step of
30 s (s) at 98 °C, followed by 28 cycles of 10s at 98 °C, 15
s at 60 °C, 30s at 72 °C, and a final elongation step of 7
min at 72 °C. The PCR master mix (20 μl volume) con-
tained 100 ng of DNA template, 0.5 μM forward and re-
verse primers, Phusion Hot Start DNA polymerase and
high-fidelity buffer (New England Biolabs), dNTPs and
sterile water. Results were checked by polyacrylamide gel
electrophoresis and samples pooled in equimolar ratio.
The samples were sequenced on an Illumina MiSeq se-
quencer at the University of Kentucky Advanced Genetic
Technologies Center, with sequence merging, trimming,
chimera removal, clustering and annotation performed
using the software package QIIME [71]. The Greengenes
database was implemented for Operational Taxonomic
Unit (OTU) annotation at a threshold of 97% sequence
similarity [72]. To avoid effects of uneven sequencing
depth [73], datasets were rarified to 3000 sequences/
sample prior to analysis. For statistical analyses, OTUs
with a frequency below 0.1% across the dataset were re-
moved [71].

Data analysis
The Shannon H α-diversity index was used to assess
bacterial richness and evenness. The interaction between
APOE + sex in α-diversity measures was evaluated using
a mixed effects model, similar to a two-way analysis of
variance (ANOVA), that analyzes repeated measures
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with missing values. This analysis was performed in the
software package GraphPad Prism (version 8.2.0). For β-
diversity, permutational ANOVA (PERMANOVA) was
used to compare microbial community structure within
and among the EFAD cohorts based on Bray-Curtis dis-
similarity [74, 75]. Pair-wise PERMANOVA was used to
assess the effect of the interaction among universal bio-
logical variables on the microbiome composition [76].
Principal coordinate analysis plots (PCoA; Bray-Curtis
distances) with 95% confidence ellipses were used to
visualize microbial communities [75, 77, 78]. The Mann-
Whitney U (MWU) test under the Monte Carlo simula-
tion, corrected with Benjamini-Hochberg False Discov-
ery Rate (p < 0.05), was used to identify differentially
abundant taxa associated with APOE + sex at the taxo-
nomic level of genus. The Random Forest based Boruta
algorithm was used to determine OTUs significant in
distinguishing samples by APOE + sex compared to ran-
domly generated probes or “shadow scores” [79]. Heat-
maps were generated using the R package, “pheatmaps”,
calculating the Euclidean distance among cohorts.

Results and discussion
Mouse fecal microbial community structure was ana-
lyzed using high-throughput sequencing of 16S rRNA
gene amplicons, followed by sequence clustering (97%
similarity) into a total of 2063 OTUs. No significant dif-
ference in α-diversity (Shannon H index) was observed
between E3FAD and E4FAD mice (p = 0.975; Add-
itional file 1: Figure S1A) or between ♂EFAD and
♀EFAD (p = 0.949; Additional file 1: Figure S1B). In
comparing across cohorts stratified by APOE + sex,
Shannon H indices were significantly higher in ♂E4FAD
and ♀E3FAD, compared to ♂E3FAD and ♀E4FAD (p <
0.05; Additional file 1: Figure S1C). Additionally, the
interaction of APOE + sex significantly modulated α-
diversity measures (p < 0.05; Additional file 1: Figure
S1C), suggesting that analyses by APOE genotype or sex
alone will mask effects on microbial community
structure.
Differences in microbial community structure between

EFAD cohorts (β-diversity) were examined with PER-
MANOVA (Additional file 3: Table S1) and visualized
with PCoA plots (Fig. 1). At the taxonomic level of
OTU, significant differences in microbial communities
were observed between E3FAD and E4FAD mice (p <
0.05; Fig. 1a) and between ♂EFAD and ♀EFAD mice
(p < 0.05; Fig. 1b). Differences associated with APOE
genotype were also exhibited in the taxonomic levels of
Family and Genus (Additional file 3: Table S1A), sug-
gesting that APOE genotype is an important modulator
of the GM, consistent with findings in APOE-TR mice
[25]. Importantly, the interaction between APOE + sex
significantly modulated the GM across taxonomic levels

of Family, Genus and OTU (p < 0.05; Additional file 3:
Table S1A). Comparisons at the OTU level among sam-
ples stratified by APOE + sex demonstrated significant
differences between ♂E4FAD and ♂E3FAD mice (p <
0.05; Fig. 1c), and between ♀E4FAD and ♀E3FAD mice
(p < 0.05; Fig. 1c), indicating that the effect of APOE
genotype is consistent across sex. Furthermore, signifi-
cant differences associated with sex were observed be-
tween ♂E4FAD and ♀E4FAD and between ♂E3FAD
and ♀E3FAD (p < 0.05; Fig. 1c). These data demonstrate
that the APOE genotype interacts with sex, leading to
sex differentiation in E3FAD and E4FAD mice. While a
recent paper by Dodiya and colleagues demonstrated no
sex effect on α- or β-diversity in FAD-Tg mice that ex-
press mouse APOE [80], the current findings may sug-
gest that the sex effect is specific to carriers of human
APOE. This mirrors the synergistic effects of ♀sex and
APOE4 genotype on AD risk in humans, greatest in
♀APOE4 > ♂APOE4 [47–50].
A taxon-by-taxon analysis at the genus level was per-

formed to identify microbial genera significantly differ-
ent between cohorts. The relative abundance of the
genera Prevotella, Ruminonoccous and Sutterella were
significantly higher in E3FAD mice compared to E4FAD
mice, while the relative abundance of Anaeroplasma was
significantly lower (Fig. 2a). Interestingly, FAD-Tg mice
also exhibited significantly higher relative abundance of
Anaeroplasma compared to wild-type mice [81, 82], sug-
gesting that Anaeroplasma may have a role in AD path-
ology. Tran and colleagues demonstrated that APOE4-
TR mice exhibit greater relative abundance of bacteria
from the genera Mucispirillum, Desulfovibrio, Butyrici-
coccus and lower relative abundance of Bacteroides, Alis-
tipes, Johnsonella compared to APOE3-TR mice [25].
Thus, our results together suggest that the effects of
APOE genotype on the GM is modulated by AD path-
ology. Additionally, Org and colleagues determined that
Allobaculum, Anaeroplasma and Erwinia are the most
abundant genera in ♂mice relative to ♀mice [83]. Simi-
larly, ♂EFAD exhibited a significantly greater relative
abundance of Allobaculum compared to ♀EFAD
(Fig. 2b). Comparing the stratified cohorts, the fecal
microbiota of ♂E4FAD mice had lower relative abun-
dance of Sutterella and Lactobacillus compared to
♂E3FAD. ♀E4FAD mice had lower relative abundance
of Prevotella and Ruminococcus compared to ♀E3FAD
(Fig. 2c). Similarly, these differences are significant at the
OTU level (Additional file 4: Table S2). Therefore, the
results suggest that the effect of APOE genotype on dif-
ferentially abundant bacteria is modulated by sex, as spe-
cific genera and OTUs are significantly different in
males or females.
Compared to ♀E3FAD mice, ♀E4FAD mice exhibited

a lower relative abundance of bacterial genera associated
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with short chain fatty acid (SCFA) production, including
Prevotella and Ruminococcus [84–89]. The GM is crucial
for the production of SCFAs that, while the underlying

mechanism is not completely understood, serve as en-
ergy sources for intestinal epithelial cells, regulators of
plasma lipid levels, and modulators of immune cells

Fig. 1 Differences in microbial community between EFAD mice stratified by APOE, sex and APOE + sex. Analysis of β-diversity associated with (a)
APOE, (b) sex and (c) APOE + sex in the GM of 4 M EFAD mice. PCoA plots with 95% confidence ellipses were generated based on the Bray-Curtis
dissimilarity. Significant differences between cohorts were determined by PERMANOVA, with significance (bold) defined by p < 0.05. Additional
file 1: Table S1 contains the complete PERMANOVA dataset
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Fig. 2 (See legend on next page.)
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[90–95]. The current results suggest a metabolic dys-
function in the ♀E4FAD GM. However, metabolomic
and metagenomic analyses will be required to interpret
accurately the interactive effects of APOE + sex on the
metabolic function of the EFAD GM.
The Boruta algorithm identified 29 OTUs significant

in distinguishing EFAD samples by APOE + sex (Add-
itional file 2: Figure S2). These 29 bacterial OTUs were
annotated at varying taxonomic levels, including the
genera Prevotella, Lactobacillus, Allobaculum, Anaero-
plasma, and Sutterella, consistent with the results of dif-
ferentially abundant bacteria (Fig. 2). Based on the
abundance of these 29 OTUs, a hierarchical heatmap
demonstrates that EFAD samples clustered by APOE +
sex (Fig. 3). Clustering of ♀E4FAD samples is further
demonstration that the murine GM is affected by a

specific interaction between APOE4 genotype and ♀sex,
consistent with human ♀APOE4 carriers exhibiting
greater AD risk compared to ♂APOE4 carriers [47–50].

Conclusions
This short report demonstrates: 1) the EFAD GM is
modulated by APOE + sex, 2) the synergistic effects of
♀sex and APOE4 genotype yield a specific GM profile in
♀E4FAD mice, and 3) clustering samples by only APOE
genotype or sex masks the interactive effects of APOE +
sex on the EFAD GM. Notably, these findings are con-
sistent with AD readouts from EFAD mice varying in se-
verity of pathology by APOE + sex, including behavioral
deficits, Aβ deposition and neuroinflammation greatest
in ♀E4FAD >♂E4FAD =♀E3FAD >♂E3FAD [65, 66].
Therefore, the GM would potentially serve as an AD

(See figure on previous page.)
Fig. 2 Relative abundance of bacterial genera in EFAD mice stratified by APOE, sex, APOE + sex. Significantly different relative abundance of
genus-level bacterial taxa associated with (a) APOE, (b) sex and (c) APOE + sex, identified by Mann-Whitney U test with a Monte Carlo Simulation
corrected for false discovery rate (*p < 0.05 vs sex; #p < 0.05 vs genotype). Tukey plots show the median and interquartile range, with outliers
removed from the graph. Significantly different relative abundance of unclassified genera and taxa from other taxonomic levels are found in the
Additional file 4: Table S2.

Fig. 3 Two-way clustered heatmap of microbial OTUs from EFAD mice stratified by APOE + sex. Heatmap generated with hierarchical clustering
(Euclidean distance, complete linkage) based on bacterial OTUs identified by Boruta, a Random Forest based machine learning algorithm
(Additional file 2: Fig. S2)
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readout, reflecting the interaction between APOE + sex.
Although the use of 16S rRNA sequencing has more
limited taxonomic resolution than shotgun metagenome
sequencing [96], 16S rRNA sequencing is sufficiently ro-
bust to identify significant effects on the GM. This study
demonstrates the importance of stratifying the EFAD
population by APOE + sex to better understand the rela-
tionship between AD and the GM. Future studies will
examine the composition and metabolic function of the
GM throughout the development of EFAD pathology
through the use of metagenomic and metabolomic ana-
lyses. In conclusion, the interactive effects of APOE +
sex on AD play an important role in modulating the
GM composition, and the current report is the first step
in identifying and understanding these effects.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13024-019-0352-2.

Additional file 1: Figure S1. Analysis of α-diversity of EFAD mice strati-
fied by APOE, sex, APOE + sex. Based on bacterial evenness and richness,
Shannon H index scores were generated and compared across EFAD
mice stratified by (A) APOE, (B) sex and (C) APOE + sex with Mann-
Whitney U test (*p < 0.05 vs sex; #p < 0.05 vs genotype). A mixed-model
analysis was used to evaluate the interactive effects of APOE + sex on
richness, evenness and α-diversity (¶ p < 0.05 vs APOE + sex).

Additional file 2: Figure S2. Boruta-identified bacterial OTUs from
EFAD mice stratified by APOE + sex. Implementing the R package “ran-
domForest”, Boruta is a feature-selection algorithm that determined the
OTUs that were significant in distinguish samples by APOE + sex com-
pared to randomly generated probes (“shadow scores” in blue). Signifi-
cance is defined by a z-score > max shadow z-score (green; listed in the
table). OTUs with a z-score that trends towards significance are labeled in
yellow.

Additional file 3: Table S1. Permutational multivariate analysis of
variance (PERMANOVA) of EFAD mice stratified by APOE, sex, APOE + sex.
(A) PERMANOVA was used to assess the effect of the interaction between
universal biological variables on the microbiome composition at various
taxonomic levels. P-values were obtained using 9999 permutations under
a reduced model. Pseudo-F ratio is defined by the difference between
cohorts over the difference within each cohort and the degrees of free-
dom. Each term is contributing a fixed component to the overall model.
Estimated sizes of components of variation are multivariate analogs to
the classical ANOVA unbiased estimators. Significance (bold) is defined
by a p < 0.05. (B) As the interaction between APOE + sex is significant,
pair-wise PERMANOVAs at the OTU level evaluated the effects of APOE on
β-diversity within ♂EFAD and ♀EFAD mice, and the effects of sex in
E3FAD and E4FAD. Significance (bold) is defined by a p < 0.05.

Additional file 4: Table S2. Results of Mann-Whitney U tests at specific
taxonomic levels in EFAD mice. Significantly different relative abundance
of bacterial genera associated with APOE, sex, and APOE + sex, identified
by Mann-Whitney U under the Monte Carlo Simulation corrected for false
discovery rate (p < 0.05) at the levels of Phylum, Class, Order, Family,
Genus and OTU.
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