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Abstract

Investigations of apolipoprotein E (APOE) gene, the major genetic risk modifier for Alzheimer’s disease (AD), have
yielded significant insights into the pathogenic mechanism. Among the three common coding variants, APOE*ε4
increases, whereas APOE*ε2 decreases the risk of late-onset AD compared with APOE*ε3. Despite increased
understanding of the detrimental effect of APOE*ε4, it remains unclear how APOE*ε2 confers protection against AD.
Accumulating evidence suggests that APOE*ε2 protects against AD through both amyloid-β (Aβ)-dependent and
independent mechanisms. In addition, APOE*ε2 has been identified as a longevity gene, suggesting a systemic
effect of APOE*ε2 on the aging process. However, APOE*ε2 is not entirely benign; APOE*ε2 carriers exhibit increased
risk of certain cerebrovascular diseases and neurological disorders. Here, we review evidence from both human and
animal studies demonstrating the protective effect of APOE*ε2 against AD and propose a working model depicting
potential underlying mechanisms. Finally, we discuss potential therapeutic strategies designed to leverage the
protective effect of APOE2 to treat AD.
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Background
Apolipoprotein E (APOE), as an apolipoprotein mediat-
ing lipid metabolism in circulation and the brain, is the
strongest genetic risk modifier of late-onset Alzheimer’s
disease (LOAD, referred to as AD in this review) [1–4].
Among the three common coding variants of APOE,
APOE*ε4 increases, whereas APOE*ε2 decreases, the risk
of AD compared with the most common APOE*ε3 allele
[5, 6]. The mechanism underlying the protective effect
of APOE*ε2 against AD remains unclear. Human studies
show that APOE*ε2 is associated with reduced Aβ de-
position in the brains of non-demented aged individuals

and AD patients [7–11], suggesting that APOE*ε2 re-
duces AD risk at least partially through Aβ-dependent
pathways. APOE*ε2 may also protect against AD
through Aβ-independent pathways. Supporting this,
APOE*ε2/2 and APOE*ε2/3 individuals (referred to as
APOE*ε2 carriers in this review) are more likely to be
cognitively intact compared with APOE*ε3/3 homozy-
gotes among individuals with minimal Aβ pathology
[12]. In addition, studies show that APOE*ε2 protects
against cognitive impairment in individuals over 90 years
of age who have high levels of Aβ in the brain [13, 14].
In vitro and in vivo studies suggest multiple potential
pathways through which APOE2 confers protection in-
dependently of Aβ pathology. These pathways likely in-
volve the neuroprotective effect of APOE2 and the
regulatory roles of APOE2 in lipid metabolism and syn-
aptic functions [15–18].
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Although APOE*ε2 has also been associated with lon-
gevity [19–23], which might be independent of its pro-
tective role against AD [24, 25], it is not entirely benign.
APOE*ε2 is associated with an increased risk of cerebral
amyloid angiopathy (CAA) which often co-exists with
AD pathology and is a major cause of hemorrhagic
stroke [26, 27]. APOE*ε2 is also associated with in-
creased risk of certain neurological disorders such as
post-traumatic stress disorder (PTSD) [28], age-related
macular degeneration (AMD) [29], supranuclear palsy
(PSP), and argyrophilic grain disease (AGD) [30, 31]. In
this review, we summarize recent progress in APOE*ε2
research and propose a hypothetical working model
depicting the protective effect of APOE*ε2 against AD.
We also discuss potential therapeutic strategies for AD
inspired by APOE*ε2-related protective mechanisms.

Main text
Biology of APOE
Human APOE
Human APOE is a 34-kDa glycoprotein consisting of 299
amino acids [32], encoded by the APOE gene located on
chromosome 19q13.32 [33]. The three allelic variants,
namely, APOE*ε2, APOE*ε3, and APOE*ε4, encode three
isoforms that differ from each other at two amino acid po-
sitions 112 and 158: APOE2 (Cys112; Cys158), APOE3
(Cys112; Arg158), and APOE4 (Arg112; Arg158) [32, 34].
Structurally, APOE has two independently-folded domains
referred to as the N-terminal domain and the C-terminal
domain [35, 36] (Fig. 1a). These two domains are linked

by a flexible loop region that is thrombolytically cleavable
[37, 38]. The N-terminal domain contains the receptor-
binding site (residues 136-150) [39], whereas the C-
terminal domain contains the lipid-binding region
(residues 244-272) [4, 40]. Additionally, residues 136-147
in the N-terminal domain and the basic residue Lys233 in
the C-terminal domain are required for APOE binding to
heparin/heparan sulfate polysaccharide chains of HSPG,
another important receptor of APOE [41, 42].
In humans, peripheral and central nervous system

(CNS) APOE do not cross the blood-brain barrier (BBB),
thus forming two independent APOE pools with no
APOE-containing lipoprotein exchange [43]. In the per-
iphery, APOE is produced primarily by liver hepatocytes
[44], while in the CNS, the majority of APOE derives
from astrocytes, microglia, vascular mural cells, and the
choroid plexus [45, 46]. Stressed neurons also produce
APOE, albeit to a much lesser extent [45, 47]. APOE
levels in human plasma follow the APOE genotype rank
order of APOE*ε2/2 >APOE*ε2/3 >APOE*ε3/3 (or
APOE*ε2/4) >APOE*ε3/4 >APOE*ε4/4 [48–51]. In con-
trast, the impact of APOE genotype on CSF APOE levels
varies across studies with different quantification
methods. While enzyme-linked immunosorbent assay
(ELISA)-based measurements show a similar APOE
genotype effect to that in plasma [48], mass-
spectrometric assays find no such effect [52, 53]. Similar
to results from human plasma, cortical APOE levels
measured by Western blot and ELISA are highest in
APOE*ε2 carriers and lowest in APOE*ε4 carriers [54].

Fig. 1 Human APOE. a Human APOE is an O-linked glycoprotein consisting of 299 amino acids. The N-terminal domain (residues 1-167) and the
C-terminal domain (residues 206-299) are linked by a flexible hinge region. The receptor binding site (residues 136-150) on the N-terminus
overlaps with the heparin binding region (residues 136-147). A second heparin-binding site on the C-terminal domain adjacent to the lipid
binding site (residue 244-272) requires K233. Amino acid substitutions at position 112 and 158 result in the three major isoforms: APOE2 (Cys112;
Cys158), APOE3 (Cys112; Arg158) and APOE4 (Arg158; Arg158). APOE has other less common isoforms; APOE (V236E) and APOE3 Christchurch
(R136S) (blue triangles) are two examples that have also been suggested to protect against AD. b Lipidated APOE-containing lipoprotein particles
contain phospholipids and unesterified cholesterol in the shell, and esterified cholesterol and triglycerides form the core. APOE molecules are
partially embedded in the phospholipid layer of the particles
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This is consistent with observations from APOE-
targeted replacement (APOE-TR) mice in which the
murine Apoe gene locus is replaced with human APOE
alleles [55], showing that APOE2-TR mice have higher
levels of APOE in the interstitial fluid (ISF) and brain
lysate than APOE3-TR mice, followed by APOE4-TR
mice [56–58].

APOE receptors
APOE functions through binding to cell surface recep-
tors, including low-density lipoprotein receptor (LDLR),
very low-density lipoprotein receptor (VLDLR), LDLR-
related protein 1 (LRP1), APOE receptor 2 (APOER2,
also known as LRP8), and heparan sulfate proteoglycans
(HSPGs) [59–61]. In addition, recent studies show the
triggering receptor expressed on myeloid cells 2
(TREM2), which is specifically expressed by microglia in
the brain, is a receptor for APOE [62–64]. The inter-
action between APOE and receptors shows isoform-
specificity and is affected by APOE lipidation status
(Table 1), which is best exemplified by LDLR that recog-
nizes only lipidated APOE [67–69], and shows much
weaker binding to APOE2 relative to APOE3 and
APOE4 [65, 66].
APOE binding to receptors either triggers the uptake

of APOE or activates downstream singling cascades
involving primarily mitogen-activated protein (MAP)
kinases [15–17, 61]. The APOE receptor-mediated
ligand uptake represents the major mechanism of lipo-
protein clearance in the periphery and lipid transport in
the CNS [70, 91]. However, the physiological role of
APOE-triggered signaling pathways is less clear. In vitro
studies show that APOE, regardless of the lipidation sta-
tus, triggers diverse signaling pathways in neurons, likely
through LRP1, to support versatile functions such as
neuronal protection and synaptogenesis [15–17]. The

functional significance of the interaction between APOE
and TREM2 remains to be elucidated, although evidence
suggests a role in microglia-mediated clearance of Aβ
and damaged neurons [64, 87].

Biological functions of APOE
APOE and lipid metabolism
In the periphery, APOE plays a major role in mediating
the clearance of triglyceride-rich lipoproteins (chylomi-
crons, VLDL, and their remnants) by interacting with
hepatic APOE receptors [70]. Individuals of different
APOE genotypes differ in their plasma lipid profiles.
Compared with APOE*ε3/3 homozygotes, APOE*ε3/4
and APOE*ε4/4 individuals (referred to as APOE*ε4 car-
riers in this review) exhibit higher levels of total choles-
terol, LDL, and triglycerides (TGs), and lower levels of
HDL, whereas APOE*ε2 carriers have lower levels of
total cholesterol and LDL, and higher levels of HDL and
TGs in the plasma [92, 93]. The APOE genotype-specific
plasma lipid profile is a combinatory result of multiple
factors [70, 94]. For example, while impaired binding of
APOE2 to LDLR is causally linked to type III hyperlipo-
proteinemia, characterized by the accumulation of
remnants of TG-rich lipoproteins [65, 66, 94, 95], hyper-
lipidemia is only observed in 5-10% of APOE*ε2/2 ho-
mozygotes [94]. The majority of APOE*ε2 carriers have
normal or, paradoxically, hypolipemic profile, which is
thought to be partially caused by the lower efficiency of
lipolytic conversion of APOE2-containing VLDL and
IDL to HDL [96–98]. Notably, the lipid profile of
APOE2-TR mice resembles the small portion of human
APOE*ε2 homozygotes who develop hyperlipidemia [99],
raising cautions when interpreting results from studies
using APOE2-TR mice.
In the CNS, APOE is the major apolipoprotein that

transports lipids [91]. CNS APOE is lipidated by cell

Table 1 APOE receptors

APOE
receptors

Isoform-specific binding APOE lipidation
required for
receptor binding?

APOE binding related functions

LDLR Lipidated APOE: APOE2 < <APOE3 = APOE4 [65, 66] Yes [67–69] Mediates lipoprotein and Aβ clearance [4, 70]

LRP1 Lipidated APOE: APOE2 < APOE3 = APOE4 [71];
Non-lipidated APOE: APOE3 binds immobilized LRP1
recombinant cluster IV with a higher affinity
than APOE4 [72]

Likely not required
although one study
suggests otherwise
[67, 72, 73]

Mediates lipoprotein and Aβ clearance [70, 74]; signal
transduction [15–17]; neurotrophic effect [16, 75–80].

VLDLR Non-lipidated APOE: APOE2 = APOE3 = APOE4 [67] No [67] Mediates lipoprotein and Aβ clearance [70, 81],
as well as reelin signaling [82–84].

APOER2/LRP8 Non-lipidated APOE: APOE2 < <APOE3 = APOE4 [85] No [85] Mediates reelin signaling [82–84]; regulates
intracellular trafficking of synaptic receptors [18].

HSPG Non-lipidated APOE: APOE2 < APOE3 < APOE4 [86] No [41, 86] Mediates lipoprotein and Aβ clearance [4, 70]

TREM2 Both lipidated and non-lipidated APOE:
APOE2 = APOE3 = APOE4 [62–64]

No [62–64] Mediates microglial phagocytosis of Aβ and
damaged neurons [64, 87, 88]; Maintains
neurodegenerative phenotype (MGnD) of
disease-associated microglia (DAM) [89, 90].
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surface ATP-binding cassette transporters ABCA1 or
ABCG1 [100–103]. Lipidated APOE forms HDL-like
particles in size and density containing free cholesterol
and phospholipids [104–106]. Brain-specific deficiency
of Abca1 in mice results in impairments in motor activ-
ity and sensorimotor functions, and changes in synaptic
structures [107], suggesting a crucial role of APOE-
mediated lipid metabolism in the CNS. However, no
substantial difference in the brain lipidomics profile has
been identified between APOE2-TR, APOE3-TR, and
APOE4-TR mice at young and middle-age [108], al-
though aged APOE2-TR mice have lower cortical chol-
esterol levels than APOE3-TR and APOR4-TR mice
[12]. In human AD brains, APOE*ε2 carriers and
APOE*ε3/3 homozygotes have similar lipidomics
profiles, whereas APOE*ε4 carriers have a significant re-
duction in ten major lipid classes, including phosphati-
dylethanolamine, phosphatidic acid, and mitochondrial
membrane bilayer-forming phospholipids [109]. Future
studies elucidating the role of APOE isoforms in cell
type-specific lipid metabolism may aid our understand-
ing of the mechanisms underlying APOE-associated AD
risks.

Neurotrophic effect of APOE
The neurotrophic effect of APOE has been well-
documented. However, questions remain regarding
isoform-specific effects. APOE3, regardless of the lipida-
tion status, promotes neurite outgrowth through a
mechanism depending on LRP1, whereas APOE4 has no
effect or inhibitory effect [75–80]. In addition, APOE3-
containing HDL lipoprotein particles protect neurons
from apoptosis induced by nutrient depletion at a higher
efficiency than APOE4-containing particles, which re-
quires LRP1 as well [16]. APOE also promotes synapto-
genesis through mediating cholesterol transport from
astrocytes to neurons [110]; however, it is unclear
whether the effect is APOE isoform-specific. The neuro-
trophic effect of APOE2 relative to those of APOE3 and
APOE4 has been less studied. Although APOE2-TR
mice displayed longer dendritic spines and increased ap-
ical dendritic arborization in the cortex at one month of
age compared with APOE3-TR mice, the differences
have not been observed in older animals [111]. More-
over, there is no difference in dendritic spine density in
the hippocampus of APOE2-TR, APOE3-TR, and
APOE4-TR mice at different ages [111].

APOE and synaptic functions
Synaptic dysfunction is one of the earliest pathological
changes in AD [112, 113]. In vitro data suggest a regula-
tory role of APOE in synaptic functions. Astrocyte-
derived APOE4, but not APOE2 or APOE3, reduces the
levels of postsynaptic APOER2, N-methyl-D-aspartate

receptor (NMDAR), and α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor (AMPAR) in cultured
neurons by sequestering the receptors in the intracellu-
lar compartment [18]. Additionally, lipidated APOE2 en-
hances, whereas APOE4 suppresses glutamate-induced
calcium influx through NMDAR in the presence of
Reelin [18]. Lipidated APOE2 also enhances the elimin-
ation of synapses by astrocytes more than APOE3 and
APOE4 in culture, indicating that APOE2 may protect
synaptic functions by reducing senescent synapses and
the accumulation of neural debris [114].
In vivo, young adult APOE2-TR, APOE3-TR, and

APOE4-TR mice have similar levels of postsynaptic
density protein 95 (PSD-95) in the cortex and hippo-
campus [12]. However, electrophysiological studies show
comparable or lower LTP amplitudes in APOE2-TR
mice compared with APOE3-TR mice [115, 116]. The
absence of an APOE isoform effect on synaptic functions
in young APOE-TR mice is not surprising given com-
parable cognitive performance between APOE2-TR,
APOE3-TR, and APOE4-TR mice, and between humans
of different APOE genotypes at young ages (< 60 years
old) [12, 117, 118]. Since the protective effect of APOE2
against cognitive decline is most prominent in the eld-
erly [12, 119, 120], one would assume a better synaptic
function in aged APOE2-TR mice compared with
APOE3-TR and APOE4-TR mice of the similar age. In-
deed, one study show that aged APOE4-TR mice display
poorer spatial memory acquisition, whereas APOE2-TR
mice exhibit better spatial memory retention than
APOE3-TR mice [12].

APOE and innate immunity
Innate immunity plays a crucial role in AD pathogenesis
[121–125]. The involvement of APOE in AD-associated
immune response is evident in recent transcriptomics
studies [89, 90, 126–128]. In amyloid mouse models,
APOE upregulation is a major molecular signature of
the subtype of microglia known as disease-associated
microglia (DAM) [89, 90, 126]. The acquisition of the
neurodegenerative phenotype (MGnD) of DAM is driven
by Aβ plaques via a TREM2-dependent pathway [89,
90]. Trem2 knockout abolishes Aβ-driven upregulation
of Apoe and reduces plaque-associated APOE protein in
amyloid mouse models [89, 129]. Consistent with these
findings, microglial APOE is also upregulated in
pathologically-confirmed human AD brains [126, 127].
APOE likely modulates microglial function in an

isoform-dependent manner through TREM2-mediated
pathways [130]. However, it remains unclear how APOE
isoforms differentially regulate the immune response, in
particular in AD pathogenesis. Evidence from studies of
lipopolysaccharide (LPS)-induced immune reactivity
shows a greater response associated with APOE*ε4
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[131–134]. However, there are conflicting results regard-
ing the regulatory role of APOE*ε2 in innate immunity.
Although one study showed that microglial culture de-
rived from APOE2-TR mice display reduced immune re-
sponse upon LPS treatment than that derived from
APOE3-TR mice [134], others found no such difference
[131]. Moreover, APOE2-TR and APOE3-TR mice show
comparable cytokine release and glial activation after in-
tracerebroventricular LPS injection [135]. As LPS treat-
ment induces acute immune responses, which does not
capture the AD-related conditions, future studies on
APOE isoform-specific role in innate immunity should
be carried out with AD mouse models bearing amyloid
and/or tau pathology.

APOE and blood-brain barrier integrity
BBB breakdown is present in multiple neurodegenerative
diseases, including AD [136]. Animal studies show that
APOE*ε4 correlates with decreased BBB integrity [137]
and slower BBB repair after brain injury [138], which is
consistent with the observation in humans that aged
APOE*ε4 carriers have increased BBB permeability com-
pared with APOE*ε3 homozygotes, irrespective of the
cognitive status [139]. Moreover, the association be-
tween APOE*ε4 and BBB breakdown in humans is inde-
pendent of Aβ and tau pathologies [139], but appears to
be caused by functional changes of pericytes [137, 139,
140]. However, whether APOE*ε2 also affects BBB integ-
rity in humans and animal models remains elusive.

Protective effect of APOE*ε2
APOE*ε2 and brain structure
Progressive cortical thinning and volume loss occur
along the AD trajectory, namely, from cognitively
normal to mild cognitive impairment (MCI) to AD
[141–146]. However, it remains unclear whether
APOE*ε2 reduces AD risk by preserving the cortical
structure. Evidence from imaging studies shows no
structural difference in cortices between APOE*ε2 car-
riers and APOE*ε3/3 homozygotes in children and
young adolescents [147–149]. However, studies of adults
yield conflicting results. Although some investigators re-
port that APOE*ε2 is associated with increased cortical
thickness and lower atrophy rate in sub-regions of the
temporal lobe relative to APOE*ε3/3 homozygotes in
non-demented aged people [150–152], others find no
such difference [153, 154]. Nevertheless, APOE*ε2 car-
riers appear to have better preserved cortical structures
than non-carriers among MCI and AD patients [152,
154], a finding that requires validation in larger cohorts.

APOE*ε2 and cognition
A plausible explanation of the protective effect of
APOE*ε2 against AD may be that APOE*ε2 carriers have

better baseline cognition, which sets a higher threshold
for cognitive impairment. However, efforts to identify
the beneficial effects of APOE*ε2 on cognition in young
to middle-aged non-demented individuals have gener-
ated mixed results. Although one study reported that
non-demented, middle-aged APOE*ε2 carriers perform
slightly better in cognitive domains including episodic
memory and executive functions [155], APOE exerts no
effect on intelligence quotient (IQ), memory and school
attainment tests in children and college students [156,
157]. Likewise, another study on a community-based co-
hort in Australia failed to identify APOE*ε2 effects on a
battery of cognitive tests in non-demented individuals
aged 20 to 60+ [118].
In contrast to observations from young subjects, the

cognitive effect of APOE*ε2 in non-demented aged
people is more consistent across studies. APOE*ε2 car-
riers outperform non-carriers in memory tests, visuo-
spatial measures, and global cognition in cross-sectional
studies [158–160]. Moreover, longitudinal studies show
that APOE*ε2 carriers have lower rate of age-related de-
cline in global cognition [12, 161], episodic memory
[119], executive function [120], and verbal learning abil-
ity [162]. Interestingly, the protective effect of APOE*ε2
on cognition is more prominent in females than in males
[12, 163].

APOE*ε2 and longevity
APOE*ε2 has been well-associated with longevity. Cauley
and colleagues first reported a higher allele frequency of
APOE*ε2 and a lower allele frequency of APOE*ε4 in the
elderly than those middle-aged [164]. Although their
study focused exclusively on females, similar observa-
tions have been reported in French male centenarians
[165]. These results have been further validated by
cross-sectional case-control studies [166–168] and longi-
tudinal studies [24, 25]. The association between the
APOE gene locus and longevity has also been confirmed
by several case-control genome-wide association studies
(GWAS) [19–23].
Despite ample evidence supporting the APOE allele-

specific effect on longevity, the mechanisms driving
the effect remain unknown. Although APOE*ε2 may
increase longevity by protecting against AD [169], evi-
dence also suggests a beneficial effect of APOE*ε2 on
survival among cognitively normal individuals [24,
25]. Likewise, although dementia is likely the major
cause of death among seniors of APOE*ε4 carriers
[25], APOE*ε4 also mediates a detrimental effect on
survival in non-demented aged people [24]. Further-
more, evidence shows that non-sex-specific cancer re-
duces life expectancy in APOE*ε4 carriers more than
in non-carriers [170].
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APOE*ε2 protects against AD: the clinical evidence
The protective effect of APOE*ε2 against AD was first
uncovered in 1994 when the APOE*ε2 allele was found
to be underrepresented in AD patients [171, 172]. Com-
pared to APOE*ε3/3 homozygotes, the risk of AD in
APOE*ε2 carriers is approximately 50% less [5, 6]. More-
over, AD patients who are APOE*ε2 carriers exhibit
slower cognitive decline compared with non-carriers
[173]. APOE*ε2 also protects against AD in Down’s syn-
drome (DS) patients whose amyloid-beta precursor pro-
tein (APP) gene is triplicated [174]. Amongst DS
individuals, APOE*ε2 carriers have reduced risk and de-
layed age at onset of AD [175–177].
How demographic factors such as gender, race, and

age may modify the protective effect of APOE*ε2 against
AD has been investigated. For example, APOE*ε2 ap-
pears to be more protective in females than in males
[178], but equally protective across ethnicities [5]. Al-
though the effect of APOE*ε4 on AD risk peaks at age
60-69, individuals of different age groups are equally
protected by APOE*ε2 [6, 179] (Fig. 2a). Furthermore,
APOE*ε2 carriers appear to benefit more from cognitive-

enhancing life experiences, such as education and read-
ing, regarding their roles in reducing AD risk than non-
carriers [180].

APOE*ε2 protects against AD: the pathological evidence
APOE*ε2 reduces Aβ pathology in humans
The protective effect of APOE*ε2 is more pronounced in
pathologically confirmed AD than clinically diagnosed
AD [10] (Fig. 2b). Postmortem AD brains from APOE*ε2
carriers have lower densities of Aβ containing neuritic
plaques than those from APOE*ε3/3 individuals [7–9],
suggesting a slower antemortem Aβ deposition in
APOE*ε2 carriers. Supporting this, positron emission
tomography (PET) imaging in non-demented individuals
shows that brain amyloid accumulates at a lower rate in
APOE*ε2 carriers than in APOE*ε3/3 homozygotes dur-
ing aging [11]. Moreover, APOE*ε2 carriers have an
older age of amyloid positivity onset than non-carriers
[11]. CSF Aβ42 is a widely-used biomarker for AD [181].
Reduced Aβ42 levels in the CSF correlate well with
increased Aβ load in the brain shown by amyloid PET
imaging [182, 183] or autopsy [184]. Consistent with the

Fig. 2 APOE*ε2 protects against AD. a Age-stratified odds ratio for AD risk (with APOE*ε3/3 as reference group) in individuals of different APOE
genotypes. APOE*ε2/2 and APOE*ε2/3 individuals have reduced risk of AD (OR < 1) compared to APOE*ε3/3 individuals and the protective effect
sizes are similar in different age groups. In contrast, APOE*ε4 carriers and APOE*ε2/4 individuals, have increased risk of AD (OR > 1) and the effect
size varies among different age groups. b Kaplan-Meier curves showing the percentage of pathologically confirmed AD cases in individuals of
different APOE genotypes. APOE*ε2 carriers are less likely to be pathologically diagnosed as AD. The protective effect is more prominent in
APOE*ε2/2 homozygotes. a A reproduction of published data by Genin, et al., Mol Psychiatry. 2011 Sep;16(9):903-7, with permission. b A visual
adaptation of a figure from Reiman et al., Nat Commun. 2020 Feb 3;11(1):667, with permission
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imaging study, APOE*ε2 is also associated with higher
levels of CSF Aβ42 in middle-aged to aged individuals,
irrespective of the cognitive and neurodegeneration
status of the subjects [185–187].
APOE*ε2 affects not only the global Aβ load but also

the region-specific Aβ deposition. Multimodal neuroim-
aging in non-demented individuals shows reduced amyl-
oid load in the precuneus in APOE*ε2 carriers compared
with APOE*ε3/3 homozygotes [188]. Moreover, the pre-
cuneal Aβ burden in APOE*ε2/3 individuals does not in-
crease significantly with age, contrasting to non-carriers
[188]. Interestingly, despite ample evidence supporting
the protective effect of APOE*ε2 against Aβ deposition,
studies show that non-demented APOE*ε2 carriers over
90 years of age (oldest old) have a higher burden of
neuritic plaques relative to non-carriers [13, 189], raising
the possibility that APOE*ε2 carriers are more resilient
to Aβ pathology than non-carriers so that the oldest old
individuals can survive better from Aβ toxicity and have
cognitive functions preserved. The protective role of
APOE*ε2 against Aβ-associated toxicity is discussed in
detail below.

APOE*ε2 and Aβ aggregation in animal models
How APOE2 affects Aβ deposition has been investigated
through crossing 5xFAD mice with APOE-TR mice (de-
noted as EFAD mice) [190]. One group found that E2FAD
mice have similar levels of Aβ42 in the hippocampus at dif-
ferent ages and higher levels of total Aβ42 in the cortex at
six months of age compared with E3FAD mice [191]. The
lack of protective effect of APOE2 against hippocampal Aβ
deposition in animal models has also been shown in a
model of PDAPP transgenic mice crossed with APOE-TR
mice (denoted as PDAPP/TRE mice) [192]. However,
PDAPP/TRE2 animals show lower Aβ load measured by
immunohistochemistry in the cortex than PDAPP/TRE3
animals at 18months of age [192]. The impact of APOE on
Aβ pathology has also been investigated through viral-
mediated overexpression of human APOE in amyloid
mouse models expressing murine Apoe. In PDAPP mice,
lentiviral-mediated overexpression of APOE*ε2 reduces hip-
pocampal Aβ levels more than APOE*ε3 and APOE*ε4
overexpression [193]. Consistently, Aβ40 and Aβ42 levels
in both soluble and insoluble fractions of the brain lysate
are reduced with APOE*ε2, but not APOE*ε3 or APOE*ε4
gene delivery in APP/ PS1 mice [194]. Taken together,
these studies suggest that the effect of APOE2 on amyloid
pathology in animal models can be affected by age, brain
region of interest, the strain of amyloid mouse models, and
the presence of murine Apoe.

APOE*ε2 and Aβ production
An imbalance between Aβ production and clearance is
considered a crucial event initiating the amyloid cascade

in AD [195]. Whether APOE2 impacts Aβ deposition in
humans by affecting Aβ production remains inconclu-
sive. Although APOE has a negligible effect on APP pro-
cessing [196–198], there are conflicting results regarding
the role of APOE isoforms in APP transcription. One re-
cent study showed that both lipidated and non-lipidated
APOE upregulates APP expression in human neurons
derived from embryonic stem cells (ESC) or human in-
duced pluripotent stem cells (iPSCs) through the DLK→
MKK7→ ERK1/2 signaling pathway. The effect is most
prominent for APOE4, followed by APOE3, and then
APOE2 [17, 199]. However, the described APOE
isoform-specific role in APP transcription conflicts with
a transcriptomic study showing that APOE2-TR,
APOE3-TR, and APOE4-TR mice have similar levels of
endogenous murine App in the brain (the result can be
found through the searchable web interface: https://
www.epaad.org/blog/index.php/gene-expresssion-data-
base/) [200].

APOE*ε2 and Aβ clearance and degradation
Brain parenchymal Aβ is eliminated through multiple
pathways, including cellular uptake, extracellular enzym-
atic degradation, CSF absorption, clearance via the BBB,
and ISF bulk flow [201]. APOE mediates Aβ elimination
from the brain in an isoform-dependent manner in
which APOE4 mediates Aβ clearance at a lower effi-
ciency than APOE3 [74, 81, 198]. In contrast, APOE2
tends to mediate Aβ clearance across the BBB at a
higher efficiency than APOE3 [81, 198]. APOE2 also reg-
ulates cellular uptake and degradation of Aβ. One study
showed that macrophages in culture from APOE2-TR
mice are more efficient in degrading both soluble and
insoluble Aβ than macrophages from APOE3-TR and
APOE4-TR mice. The higher efficacy of APOE2-
associated Aβ degradation is likely related to the
enhanced matrix metalloproteinase-9 activity [202].
Additionally, APOE has been shown to mediate soluble
Aβ degradation by microglia at an efficacy order of
APOE2 > APOE3 > APOE4 [203].

APOE*ε2 protects against Aβ toxicity
Previous studies have shown that amyloid load correlates
poorly with cognitive impairment and AD severity [204].
Instead, soluble oligomeric Aβ is suggested to be more
directly linked to the neurotoxicity in AD brains [204,
205]. The regulatory role of APOE isoforms in Aβ
oligomerization has been demonstrated by split-luciferase
assays showing that immortalized astrocyte or HEK293
cell-derived APOE promotes Aβ oligomerization with a
potency order of APOE4 > APOE3 > APOE2 [206].
However, the in vitro observation of reduced Aβ
oligomerization associated with APOE2 was not sup-
ported by a study of EFAD mice reporting similar levels of
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oligomeric Aβ in the soluble fraction of the brain lysate in
E2FAD and E3FAD mice [191]. In addition to different
modeling systems used, a direct comparison of results
from these two studies can be challenging due to the dy-
namic nature and complex composition of Aβ oligomeric
species [205, 207]. Future studies using combinatory ap-
proaches (e.g., conformation-specific antibody-based assay
or mass spectrometry) to quantify oligomeric Aβ in the
brain lysate and CSF of human subjects of different APOE
genotypes may help address the question of whether
APOE2 reduces oligomeric, toxic Aβ species.
APOE2 also appears to exert anti-toxic effects against

Aβ. Both lipidated and non-lipidated APOE2 protect the
B12 neuronal cell line against Aβ25-35-induced cell
death more than APOE3 and APOE4 [208]. Moreover,
hippocampal slices prepared from young adult APOE2-
TR mice are more resistant to AD brain lysate or Aβ42-
induced LTP suppression than slices prepared from
APOE3-TR and APOE4-TR animals of the same age [18,
209]. There is also evidence suggesting that APOE2 ex-
pression reduces synaptic loss and neuritic dystrophy in
amyloid mouse models [194, 210]. Additionally, APOE2
appears to confer protection for other brain cell types,
including cultured pericytes [211] and endothelial cells
[212], which potentially constitute indirect pathways for
neuronal protection.

APOE and Aβ interaction: essential for Aβ deposition?
The essential role of murine APOE in Aβ deposition in
animal models has been well-recognized [213]. However,
inferring the isoform-specific role of human APOE in
Aβ deposition based on studies of murine APOE may be
difficult as there is only one APOE isoform in mice,
which is structurally and functionally different from hu-
man APOE [190, 214]. How human APOE is involved in
Aβ deposition is not entirely clear. In vitro studies show
that human APOE forms SDS-insoluble complexes with
Aβ, irrespective of the lipidation status [215–219]. The
complex formation requires the C-terminal lipid-binding
domain of APOE [220], and shows APOE isoform-
dependency, with lipidated APOE2 binds Aβ at a higher
affinity than lipidated APOE3, followed by lipidated
APOE4 [219, 221]. Consistently, E2FAD mice have
higher levels of SDS-resistant APOE/Aβ complex than
E3FAD mice > E4FAD mice in brain lysate [222]. In
postmortem human brains, APOE co-deposits with Aβ
plaques [216, 223]. Taken together, these studies suggest
that APOE-Aβ complex formation can either protect
against or promote Aβ deposition, likely in an APOE
isoform-specific manner. Interestingly, blocking the
interaction between human APOE and Aβ with Aβ12-
28P, a synthetic peptide that is homologous to the APOE
binding domain of Aβ, reduces brain Aβ levels in APP/
PS1 mice crossed with APOE-TR animals [224].

However, Verghese et al. show that APOE has minimal
binding with soluble Aβ in human CSF and in the ISF of
animal models [225], raising the possibility that Aβ
deposition in humans does not require APOE/Aβ com-
plex formation, but instead is affected by a direct seeding
effect of APOE on amyloids [226, 227].

APOE*ε2 and neurofibrillary tangles (NFTs)
NFTs containing hyperphosphorylated tau represent an-
other pathological hallmark of AD [228–230]. Autopsy
studies show reduced NFTs in postmortem AD brains of
APOE*ε2 carriers [7–9]. Although the mechanism
underlying this reduction is poorly understood, the
protective effect of APOE*ε2 against AD tau may be par-
tially mediated through its effect on Aβ deposition, as
APOE*ε2 negatively correlates with tau pathology only
in Aβ positive but not in Aβ negative individuals [231].
Whether and to what extent APOE*ε2 may protect
against tau pathology independently of Aβ in AD
remains elusive.
Progress in our understanding of tau pathogenesis in

AD is hampered by a lack of sophisticated mouse
models that mimic human NFT tau [232, 233]. The
widely used tau models, including rTg (tauP301L)4510
mice and Tau P301S/PS19 mice, carry the familial fron-
totemporal lobar degeneration (FTLD) MAPT mutation
at the P301 residue, which is not found in AD patients
[233]. Thus, results from studies using these models
should be interpreted carefully. Bearing this in mind,
one study showed that PS19 mice have similar levels of
tau pathology and brain atrophy when crossed with
APOE2-TR mice versus when crossed with APOE3-TR
mice [131]. However, another study found that viral-
mediated TauP301L expression induces more tau path-
ology in APOE2-TR mice than in APOE3-TR mice,
suggesting that APOE2 increases the risk of primary
tauopathies [30]. Supporting this, APOE*ε2 has been as-
sociated with increased risks of PSP and argyrophilic
grain disease (AGD) in humans [30, 31]. Future studies
to gain mechanistic insights into the impact of APOE
isoforms on AD tau require novel animal models that
harbor both Aβ and tau pathologies. In addition, the
emerging tau PET imaging will permit the exploration of
tau pathogenesis in human brains in vivo [234, 235].

How APOE*ε2 protects against AD: a working model
Taken together, APOE*ε2 may protect against AD
through multiple, interconnected mechanisms. Based on
a growing body of evidence, we propose that hyperlipi-
dation of APOE2 is a central mechanism underlying the
protective effect of APOE*ε2 (Fig. 3). Although direct
evidence showing increased lipidation of APOE2 relative
to APOE3 and APOE4 in human brains is not available,
accumulating evidence demonstrates that APOE2 from
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human CSF [236], immortalized astrocytes [237], as well
as primary microglia and astrocyte culture derived from
human APOE knock-in mice, are more lipidated than
APOE3 and APOE4 [46]. Lipidation substantially im-
pacts APOE binding to receptors and other proteins,
such as Aβ [67–69, 238], and also affects APOE catabol-
ism, leading to changes in peripheral and CNS APOE
levels [239]. Differential lipidation of APOE isoforms
potentially contributes to the distinct cognitive and
pathological outcomes in humans of different APOE
genotypes through both Aβ-independent (e.g., neuro-
trophic effect, lipid metabolism, synaptic function, and
immunomodulation) and Aβ-dependent pathways.
APOE2 may have a greater neurotrophic effect, which

maintains neuronal survival and synaptic functions during
AD pathogenesis. This is likely achieved by APOE2-
mediated lipid metabolism and APOE2-triggered neuro-
protective signaling pathways [15–17]. In addition, evi-
dence suggests a critical role of APOE in microglial
functions during AD pathogenesis [89, 90, 126–128]. How
APOE2 may regulate the immune response of microglia
differently than APOE3 and APOE4 remains unclear. Pre-
vious studies have shown that promoting cholesterol ef-
flux reduces the immune response of macrophages [240,
241]. Given that APOE2 is a better cholesterol acceptor
than APOE3 and APOE4 [242, 243], one may assume a
reduced inflammatory response of microglia associated
with APOE2 in AD, which requires further investigation.
Additionally, hyperlipidation of APOE2 may contribute to
reduced Aβ deposition. Supporting this, Abca1-knockout
increases [244], whereas Abca1-overexpression decreases
Aβ deposition in PDAPP mouse models [245]. Further-
more, increasing APOE lipidation through pharmaco-
logical activation of liver X receptors (LXRs) reduces Aβ
deposition in AD transgenic animal models [203, 246,
247]. APOE2 also has been associated with longevity [19–
23]. Although the reduced AD risk in APOE*ε2 carriers
may contribute to their longer life expectancy, it is also
possible that there are unknown anti-aging effects that
contribute to their reduced risk of AD through a systemic
impact on the whole body. These factors could be
APOE2-specific proteins, lipids, and/or metabolites in the
plasma [200, 248].

APOE*ε2 and other proteinopathies
APOE*ε2 and TDP-43 proteinopathy
Intracellular TDP-43 inclusion is a shared pathological
hallmark of amyotrophic lateral sclerosis (ALS) and
FTLD [249]. TDP-43 aggregation is commonly present
in hippocampal sclerosis and AD brains [250–253]. Al-
though clinical evidence shows no correlation between
APOE and ALS risk [254], APOE*ε2/2 ALS patients
exhibit decreased glucose metabolism in extra-motor
areas compared with APOE*ε3/3 homozygote patients,

implying an increased risk of cognitive impairment asso-
ciated with APOE*ε2 in ALS patients [255]. The impact
of APOE*ε2 on FTLD risk remains inconclusive, with
APOE*ε2 exerting either no effect or an increased risk of
FTLD [256–258].
Pathologically, APOE*ε4 has been associated with

exacerbated TDP-43 proteinopathy in FTLD [259].
There is also evidence showing that APOE*ε4 increases
the TDP-43 burden in the brain independently of Aβ
and tau load, which mediates the increased risk of
hippocampal sclerosis in APOE*ε4 carriers [260].
However, the effect of APOE*ε2 on TDP-43 pathology
remains unknown.

APOE*ε2 and α-synuclein proteinopathy
Dementia with Lewy bodies (DLB) and Parkinson’s dis-
ease dementia (PDD) are two neurodegenerative diseases
collectively known as Lewy body dementia (LBD) [261].
Pathologically, LBD is characterized by cytoplasmic α-
synuclein (αSyn) positive inclusions known as Lewy
bodies. α-Syn pathology also affects multiple system at-
rophy (MSA) [262], and is present in over 50% of the
pathologically-confirmed AD brains [263]. Although hu-
man studies have shown that APOE*ε4 increases the risk
of DLB [264, 265], the impact of APOE*ε2 is less clear.
Evidence from a Norwegian cohort suggests a reduced
risk of DLB in APOE*ε2 carriers [266], but further valid-
ation is required. Although the association between
APOE and PD has been disproved [267–269], evidence
shows an increased risk of PDD in APOE*ε2 carriers
[270, 271]. Similar to PD, MSA appears to be also
exempted from the impact of APOE [272, 273].
Recent studies addressing the effects of APOE iso-

forms on α-synuclein pathology and related toxicity
in vivo have produced interesting findings. αSyn path-
ology in APOE-TR mice induced by adeno-associated vi-
ruses (AAV)-mediated overexpression of human wild
type αSyn, or in transgenic mice that overexpress the
PD-associated mutant, αSyn (A53T), is exacerbated by
APOE4, but not by APOE2 or APOE3 [274, 275].
Although APOE2 protects against αSyn pathology in
αSyn (A53T) transgenic mice [274], the protective effect
was not observed in the study using the viral-mediated
approach [275].

APOE*ε2 and risks of other neurological disorders
Studies have suggested APOE*ε2 as a risk factor for
PTSD, given there is a disproportionately high represen-
tation of APOE*ε2 carriers among PTSD patients [28].
Moreover, PTSD patients carrying the APOE*ε2 allele
display more severe symptoms [276] and potentially
have stronger stress responses than non-carriers [277].
The negative effect of APOE*ε2 on PTSD is also sup-
ported by an in vivo animal study showing a slower fear
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extinction in APOE knock-in mice expressing APOE*ε2
than those expressing other APOE alleles [277].
AMD is the leading cause of vision loss in the elderly

[278]. The polymorphism of APOE has been associated

with AMD risk [279–281]. Opposite to the risk profile
of AD, APOE*ε2/2 individuals have increased, whereas
APOE*ε4 carriers have decreased risk of AMD compared
to APOE*ε3/3 homozygotes [29]. In animals, APOE2-TR

Fig. 3 Potential mechanisms underlying APOE2 protective effects against AD. CNS APOE is produced primarily by astrocytes, and also by
activated microglia. Newly synthesized APOE is lipidated through cell surface ABCA1 or ABCG1, generating HDL-like lipoprotein particles. In the
CNS, APOE2-containing lipoprotein particles are more lipidated than APOE3 and APOE4-containing particles, thus are larger in size. The lipidation
of APOE can be modulated by targeting the transcription factors, LXR, and RXR, which regulate the expression of APOE and ABCA1. Lipidated
APOE plays a critical role in lipid transport from astrocytes to neurons. Due to hyperlipidation, APOE2-containing lipoprotein particles likely deliver
lipids to neurons at a higher efficiency than APOE3 and APOE4. APOE2 may also maintain synaptic plasticity during AD, potentially through
interacting with synaptic APOE receptors. During AD pathogenesis, Aβ is produced primarily by neurons through proteolytic processing of APP.
APOE regulates Aβ metabolism in an isoform-dependent manner. APOE2 likely mediates Aβ clearance via BBB at a higher efficiency than APOE3
and APOE4. In addition, APOE2 may have a stronger effect in promoting the proteolytic degradation of Aβ by extracellular enzymes. The
regulatory roles of APOE in Aβ metabolism may be partially mediated through APOE/Aβ complex formation. APOE*ε2 has also been associated
with reduced neurofibrillary tangles in AD patients, though the mechanism is unclear. Additionally, APOE2 may confer protection against AD by
affecting the plasma lipid and metabolomics profiles. ACID, intracellular domain of the amyloid-precursor protein; sAPPβ, soluble amyloid
precursor protein β
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mice exhibit increased subretinal accumulation of mono-
nuclear phagocytes (MP), retinal degeneration, and
choroidal neovascularization than APOE3-TR and
APOE4-TR mice at 12 months of age [282]. The detri-
mental effect of APOE2 in AMD may be partially caused
by the APOE*ε2-associated activation of MPs, as block-
ing the activity of the innate immunity receptor cluster
in MPs reduces AMD pathogenies in aged APOE2-TR
animals [282].
APOE*ε2 may also modify the risks of other less com-

mon neurological disorders. For example, APOE*ε2 has
been associated with a reduced risk of Creutzfeldt-Jakob
Disease [283], and increased risks of cerebral palsy [284]
and Machado-Joseph Disease [285]. However, the
evidence should be examined carefully, given the small
sample size of these studies.
Large-scale human studies have disputed the associ-

ation between APOE and multiple sclerosis (MS) [286,
287], whereas the impact of APOE*ε2 on Huntington
disease (HD) remains elusive. Despite an earlier report
of a younger age at onset of HD in male APOE*ε2/3 pa-
tients [288], the observation has not been replicated by
others [289].

APOE*ε2 and cerebrovascular diseases
Cerebral amyloid angiopathy (CAA)
CAA is caused by Aβ deposition in cerebral vessel walls
[290]. As a common concurrence in AD, CAA mostly af-
fects small arteries and capillaries in the CNS [291]. Des-
pite APOE*ε2 being protective against Aβ deposition in
the brain parenchyma, APOE*ε2 carriers are at higher risk
and severity of CAA compared to APOE*ε3/3 individuals
[26, 27]. APOE*ε2-associated accumulation of Aβ causes
amyloid-laden vessels to undergo vasculopathic changes
such as fibrinoid necrosis, leading to vessel rupture and
resultant hemorrhages in APOE*ε2 CAA patients [292,
293]. In contrast, APOE*ε4 CAA patients more commonly
exhibit microbleeds than hemorrhages [27, 294]. APOE*ε2
and APOE*ε4 impact blood vessels of varying sizes,
thereby differentially affecting CAA-related pathological
outcomes. For example, APOE*ε4, but not APOE*ε2, has
been associated with capillary amyloid angiopathy [27].
The mechanism underlying the difference is unclear but
possibly related to the differential APOE receptor expres-
sion [295, 296], or isoform-specific impact on different
vascular cell types [140, 297].
CAA is a common cause of recurrent lobar intracere-

bral hemorrhage (ICH) [298, 299]. Although ICH-related
stroke is relatively uncommon, it is associated with high
mortality and morbidity [300]. The APOE*ε2 allele is as-
sociated with an increased risk for hematoma expansion
in lobar ICH patients, especially in ICH cases with CAA
[299], predisposing patients for subsequent hemor-
rhages. In agreement with that, ICH recurrence within

two years of the first event is 18% higher in APOE*ε2
carriers as compared to APOE*ε3/3 individuals [301].
Additionally, the effect of APOE*ε2 on ICH risk appears
to be affected by ethnic background, such that APOE*ε2
imposes a higher risk of ICH for Asian than for Euro-
pean individuals [302].

Stroke
APOE*ε2, like APOE*ε4, is also a genetic risk factor for
stroke [303]. Compared with APOE*ε3/3 individuals,
APOE*ε2 carriers are at higher risk for cerebral and cor-
tical infarction [304]. Furthermore, APOE*ε2 is associ-
ated with higher chances of both ischemic and
hemorrhagic stroke recurrence [298, 301, 302, 305].
Notably, the impact of APOE*ε2 on stroke occurrence
may be modulated by age, as the stroke risk in APOE*ε2
carriers decreases significantly after age 70 [304].

APOE*ε2-inspired therapeutic strategies
As APOE-targeting strategies for AD treatment have
been extensively reviewed elsewhere [4, 306–309],
herein, we focus on the development of therapies in-
spired by recent APOE*ε2 studies.

Viral-mediated APOE*ε2 overexpression
Given APOE2 protects against AD likely due to its
greater neuroprotective functions than that of APOE3
and APOE4 (Fig. 3), introducing APOE2 into the brain
of AD patients who lack APOE*ε2 may have therapeutic
effects. This idea has been tested with amyloid mouse
models expressing murine Apoe. Viral-mediated overex-
pression of APOE2, but not APOE3 or APOE4 in the
brain at the age when Aβ starts to deposit halts Aβ accu-
mulation and reduces Aβ burden [193, 194], which may
be attributed to the increased Aβ clearance in APOE2-
expressing animals [194]. Moreover, evidence shows that
APOE*ε2 gene delivery into amyloid mouse models with
APOE4 expression reduces Aβ levels in the brain [310].
However, since APOE2 increases the risk of certain dis-
eases such as CAA [26, 27], stroke [303], PTSD [28],
AMD [29], and primary tauopathy [30], the long-term
safety of APOE2 overexpression in human brains should
be carefully assessed.

Increasing APOE lipidation
As has been discussed, hyperlipidation of APOE2 lipo-
protein may be the central mechanism underlying its
protective effect. Thus, pharmacological enhancement of
APOE lipidation represents an attractive approach for
AD treatment [311–313]. LXRs are transcriptional fac-
tors that form heterodimers with retinoid X receptors
(RXRs) to regulate the expression of a battery of genes
involved in lipid metabolism, including ABCA1 and
APOE [314]. Oral administration of the LXR agonists,

Li et al. Molecular Neurodegeneration           (2020) 15:63 Page 11 of 19



such as GW3965 and TO901317, increases the protein
level and lipidation of brain APOE in mice [203, 246,
247, 315, 316]. Long-term (one month or longer) treat-
ment with GW3965 or TO901317 during early-stage Aβ
deposition reduces brain Aβ load and improves cognitive
performances of amyloid transgenic animals [203, 246,
247]. However, conflicting reports exist regarding the
treatment effect of LXR agonists when there is already
substantial Aβ deposition in the brain. One study re-
ported that although TO901317 administration for seven
weeks reduces Aβ deposition in the cortex, it yields no
impact on the cognition of APP23 mice [315]. Con-
versely, other studies show that long-term GW3965 or
TO901317 treatment rescues cognitive impairments in
different amyloid mouse models without affecting the
Aβ burden in the brain [317–319].
The potential therapeutic effect of RXR agonists for

AD also has been explored, which is best exemplified by
the Food and Drug Administration (FDA)-approved
drug, Bexarotene. Like LXR agonists, oral administration
of Bexarotene upregulates APOE and ABCA1 in mouse
brains [320–323]. Studies show that both short-term and
long-term treatment of Bexarotene in amyloid mouse
models after Aβ has been deposited in the brain restores
cognitive performances of the animals, with or without
affecting the brain Aβ load [320, 321, 324]. However, the
treatment effect of Bexarotene in either cognition or Aβ
pathology in animal models has not been replicated by
others [323, 325–328]. Interestingly, despite conflicting
results from amyloid mouse models expressing murine
Apoe, there is consistent evidence showing that short-
term Bexarotene treatment reverses memory deficit, in-
creases Aβ clearance, and reduces soluble Aβ42 in the
hippocampal lysate of amyloid mouse models expressing
human APOE isoforms [329, 330].
In humans, Bexarotene treatment increases APOE

levels in the CSF [331]. However, the treatment has no
impact on brain amyloid load and cognitive functions in
AD patients [332]. Moreover, Bexarotene has been re-
ported to cause systemic adverse effects, including
hypertriglyceridemia [332], which may limit its potential
clinical use in AD patients.
While identifying and testing novel LXR/RXR agonists

could be a future direction for AD treatment [333],
modulating APOE lipidation by targeting ABCA1 may
be a promising alternative option. Overexpression of
murine Abca1 under mouse prion promoter reduces Aβ
deposition in PDAPP mice brains [245]. In addition,
brain ABCA1 is upregulated by genetic deletion of the
small non-coding microRNA (miRNA), miR-33 [334].
Intracerebroventricular infusion of anti-miR-33 oligonu-
cleotides reduces cortical Aβ40 levels in 3-month-old
APP/PS1 mice [334]. The activity of ABCA1 may also be
enhanced by the APOE mimetic peptide CS-6253 [335].

However, whether CS-6253 induces beneficial effects
against AD remains to be tested.

Converting APOE*ε4 to APOE*ε2
With the emergence of powerful gene-editing tools such
as the CRISPR-Cas system [336–338], generating iso-
genic iPSC lines from one APOE genotype (normally
APOE*ε3/3) to other genotypes becomes efficient and
cost-effective [339–341]. Compared to APOE*ε3 cells,
isogenic APOE*ε4 cells show dramatic phenotypic
changes, including increased Aβ42 and phosphorylated
tau in neurons, impaired Aβ uptake and cholesterol me-
tabolism in astrocyte, and reduced phagocytosis of Aβ in
microglia [339, 340]. How isogenic APOE*ε2 cells may
be functionally different from APOE*ε3 and APOE*ε4
cells remains unclear. Future studies should address the
clinical potential of converting APOE*ε4 to APOE*ε2
in vivo as a treatment option for AD.

Plasma APOE-based therapy
Although it remains controversial whether and how per-
ipheral APOE may contribute to AD pathogenesis [46,
342], evidence suggests that low plasma APOE levels are
associated with increased AD and dementia risk, inde-
pendent of APOE genotype [343, 344]. Moreover, higher
levels of APOE in APOC3-free HDL particles in the
plasma have been associated with better cognitive per-
formance and reduced risk of dementia in humans
[345]. Since APOE*ε2 carriers have higher levels of
plasma APOE [48–51] and HDL [92, 93], whole plasma
or plasma APOE-containing lipoprotein particles from
APOE*ε2 carriers may hold promise as a therapeutic
strategy for AD.

Conclusions
Despite compelling evidence from human studies sup-
porting the protective effect of APOE*ε2 against AD, the
underlying mechanisms remain mostly elusive. APOE*ε2
likely confers protection against AD through both Aβ-
dependent and independent mechanisms, both of which
appear to be underpinned by increased lipidation of
APOE2-containing lipoprotein particles (Fig. 3). To val-
idate the mechanisms proposed in this review, more evi-
dence from humans and animal models is required.
Interpretation of data from these studies should be
context-dependent, with age, sex, and AD pathology be-
ing considered. Furthermore, improved understanding of
the roles of APOE2 in other diseases, such as cerebro-
vascular diseases and different proteinopathies, including
tau, TDP-43, and α-Syn pathologies, will aid in the com-
prehensive assessment of safety regarding APOE2-
targeted therapeutics for AD.
In addition to APOE2, other APOE variants have been

suggested to protect against AD. For example, the APOE
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(V236E) variant in the APOE3 backbone has been asso-
ciated with a significant reduction in AD risk [346].
Additionally, the possession of two copies of the APOE3
Christchurch variant (R136S) markedly delayed cognitive
decline in a presenilin 1 (PSEN1) mutation carrier, likely
by limiting tau accumulation in the brain [86]. Future
studies to validate and to understand the mechanisms
underlying the protective effect of these variants will
shed light on identifying disease-modifying interventions
targeting APOE for AD therapies.
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