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Abstract

Alzheimer’s disease (AD) is the most common type of dementia, affecting millions of people worldwide; however,
no disease-modifying treatments are currently available. Genome-wide association studies (GWASs) have identified
more than 40 loci associated with AD risk. However, most of the disease-associated variants reside in non-coding
regions of the genome, making it difficult to elucidate how they affect disease susceptibility. Nonetheless,
identification of the regulatory elements, genes, pathways and cell type/tissue(s) impacted by these variants to
modulate AD risk is critical to our understanding of disease pathogenesis and ability to develop effective
therapeutics. In this review, we provide an overview of the methods and approaches used in the field to identify
the functional effects of AD risk variants in the causal path to disease risk modification as well as describe the most
recent findings. We first discuss efforts in cell type/tissue prioritization followed by recent progress in candidate
causal variant and gene nomination. We discuss statistical methods for fine-mapping as well as approaches that
integrate multiple levels of evidence, such as epigenomic and transcriptomic data, to identify causal variants and
risk mechanisms of AD-associated loci. Additionally, we discuss experimental approaches and data resources that
will be needed to validate and further elucidate the effects of these variants and genes on biological pathways,
cellular phenotypes and disease risk. Finally, we discuss future steps that need to be taken to ensure that AD GWAS
functional mapping efforts lead to novel findings and bring us closer to finding effective treatments for this
devastating disease.
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Background
Introduction to the genetics of Alzheimer’s disease and
genome-wide association studies
Alzheimer’s disease (AD) is the most common type of
dementia among the elderly and, due to the aging global

population, the number of people living with AD is ex-
pected to rise to 151 million worldwide by 2050 [1]. AD
is characterized by progressive neurodegeneration that
results in gradual cognitive and functional decline [2].
The neuropathological hallmarks of AD are the aggrega-
tion of amyloid-beta (Aβ) peptides into extracellular
amyloid plaques and of hyperphosphorylated tau into
intracellular neurofibrillary tangles [2]. In addition, re-
active changes of astrocytes and microglia (gliosis) and
accumulation of lipids (lipidosis) were also originally
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described by Alois Alzheimer and are often observed in
disease [3].
The discovery of mutations in three genes (APP,

PSEN1 and PSEN2) that cause rare, early-onset and
monogenic forms of AD led to the development of the
amyloid cascade hypothesis, which postulates that ab-
normal aggregation and deposition of amyloid β peptide
(Aβ is one of the products of APP cleavage by β- and ɣ-
secretase, of which PSEN1/2 are two subunits) is neuro-
toxic and the primary cause of neurodegeneration [4].
Unfortunately, many clinical trials that relied on this hy-
pothesis have failed to ameliorate AD, and no disease-
modifying treatments are currently available [5], making
it essential to generate novel therapeutic hypotheses for
drug discovery that are based on the genetics of the
common, late-onset forms of AD [6].
In contrast to monogenic forms of AD, over 95% of

cases occur after the age of 65 and are generally consid-
ered to be oligogenic in nature [7]. Although more com-
plex, this late-onset form of AD (LOAD) is also highly
heritable [8]. Genome-wide association studies (GWASs)
comparing clinically defined AD cases or AD-by-proxy
cases (those with parental history of AD) with non-
demented age-matched controls or AD-by-proxy con-
trols, respectively, have been used to identify genetic var-
iants associated with disease risk. A typical GWAS uses
microarray genotyping to test the association of a single
trait (e.g. disease diagnosis) or biometric phenotype (e.g.,
height, BMI, IQ) with a large number of common single
nucleotide variants, also known as single nucleotide
polymorphisms or SNPs, across the whole genome.
These genotyped SNPs are selected because they each
represent or ‘tag’ a group of genetic variants often inher-
ited together as a haplotype block of high linkage dis-
equilibrium (LD) spanning over a region of the genome.
Thus, SNPs associated with traits by GWAS, rather than
being interpreted as disease-causative variants in a given
locus, should be thought of as identifying regions, or
haplotypes, associated with disease. To date, AD GWASs
have identified common genetic variants that modulate
disease susceptibility in more than 40 genomic regions/
loci [9]. However, these SNPs are mostly non-coding
and the effect sizes of the identified associations are
(with the exception of the APOE locus) very small. To-
gether, this makes the identification of causal variants,
genes, and molecular mechanisms underlying disease
even more challenging.
In this review we will describe the recent advances and

challenges in the identification of disease-relevant cell
types(s) in which AD risk variants, genes and pathways
likely operate. We then discuss variant and gene
prioritization approaches that utilize statistical methods
as well as integration of transcriptomic, epigenomic and
chromatin interactions data. We will further describe

experimental strategies to validate and further investi-
gate downstream functional effects and risk mechanisms
of candidate causal variants and genes. Finally, we will
outline future directions in identifying AD risk variants
and genes and investigating their downstream pathogen-
etic effects in cell and animal models.
In the next section we start by introducing the concept

of functional mapping and why these efforts are critical
for our understanding of AD pathogenesis. We will then
discuss the concepts of molecular trait associations and
their importance in deciphering the roles of non-coding
disease risk variants.

Introduction to functional mapping
Functional mapping is a set of approaches that aims to
identify causal cell types, variants and genes in the re-
gion of association through various statistical methods
and often integration of multiple sources of evidence,
such as epigenomic, transcriptomic, and proteomic data.
The overarching goal of fine-mapping is to quantify the
strength of evidence that certain variants are not merely
associated with the trait, but likely have functional im-
pact in the relevant cell types and are responsible for
modulating disease risk. Functional mapping is an essen-
tial component of post-GWAS analyses, since the eti-
ology of the disease cannot be dissected without an
understanding of the causal cell types, variants, genes,
and their mechanisms of disease risk modification. How-
ever, there are many challenges associated with fine-
mapping of GWAS loci.
First, most GWAS association signals contain a group

of co-inherited variants that are in high LD with true
causal variant(s). The LD patterns in a locus are affected
by a multitude of factors, including recombination, nat-
ural selection and population bottlenecks, which can
lead to complex haplotypes [10]. Hence, groups of vari-
ants with similar strength of disease associations as well
as correlation with other haplotypes in the locus can
make fine-mapping quite difficult. Second, some loci
contain multiple independent signals associated with the
phenotype, making it hard to identify candidate causal
variant(s). While integration with molecular quantitative
trait loci or molQTLs (associations between genetic vari-
ation and molecular traits, such as gene expression) can
be used to prioritise causal variants, the abundance of
such associations makes it difficult to assess the nature
of the relationship between molecular phenotypes and
disease associations [11]. Finally, non-coding variants
identified through GWAS often exhibit their effects in a
cell-type specific manner [12]. Hence, the success of
fine-mapping strategies is dependent on the identifica-
tion of the most relevant cell type and availability of
relevant cell-type specific datasets.
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Despite these challenges, fine-mapping efforts are crit-
ical in our understanding of genetic architecture and dis-
ease pathogenesis. The potential of GWAS to be
translated into biological knowledge and clinical insight
is directly dependent upon the effectiveness of fine-
mapping efforts, which, when successful, identify candi-
date causal variants and their mechanisms of action and
nominate candidate causal genes for further testing in
human cells and mouse models, and as therapeutic tar-
gets for drug development and testing in clinical trials.

Introduction to molecular trait and disease risk
associations
When a haplotype is found to be associated with disease,
the first critical step is to identify the functional vari-
ant(s), gene(s) and cell type(s) that mediate the statistical
association of genetic variation at the locus with disease
risk. As mentioned above, many disease-associated vari-
ants fall within non-coding regions of the genome. The
function of these non-coding variants is often much less
clear than those variants falling within gene coding re-
gions, since there are a variety of ways by which non-
coding variants can modulate disease susceptibility.
These include effects on gene expression regulation,
RNA splicing, and chromatin accessibility, among others,
which in turn affect the biology of cells, tissues, organs,
and systems in the causal path to disease [12].
In order to understand the functional consequences of

genetic variation at disease-associated loci, genetic vari-
ation must first be linked to changes in molecular phe-
notypes. This is often done by treating given molecular
phenotypes of interest, such as levels of gene expression
(RNA or protein), RNA splicing, histone modifications
that mark chromatin activity, or chromatin accessibility
as quantitative traits in their own GWAS [13]. Genomic
regions significantly associated with changes in the levels
of these molecular phenotypes are then referred to as
molecular quantitative trait loci (molQTLs). Gene ex-
pression associations (eQTLs) have been used to identify
haplotypes that are associated with both disease risk and
expression of certain genes, thus implicating them in
disease pathogenesis [14]. Other molQTL associations
can also be used to decipher the functional roles of non-
coding variants, such as associations between genetic
variation and splicing (sQTLs), histone marks (hQTLs),
transcription factor binding (bQTLs), miRNA expression
(miQTLs), DNA methylation (meQTLs), chromatin ac-
cessibility (caQTLs), and others [13]. Here, we will refer
to these associations (i.e., associations between genetic
variants and a trait) as GWAS associations.
Various statistical approaches have been developed to

integrate multiple molecular associations with disease
risk associations and thus gain insight into disease eti-
ology. Integration of disease risk associations with other

molecular trait associations, such as eQTLs, has been in-
credibly valuable in dissecting the likely mechanism of
action of non-coding variants in disease risk loci. There
are a multitude of methods that employ various statis-
tical approaches to quantify the strength of evidence that
disease risk is modulated by molecular phenotypes, such
as chromatin activity and gene expression (Fig. 1). These
methods generally help distinguish random colocaliza-
tion of these signals from causality (e.g variant affects
expression that in turn modulates disease risk) or plei-
otropy (e.g a variant having distinct and parallel pheno-
typic effects on expression and disease risk). In this
review, we will briefly discuss some of these methods be-
fore delving into their application to AD GWAS.

Tissue and cell-type prioritization in AD
For many complex traits that are studied with GWAS, it
is often unclear which cell types are causal for the devel-
opment of the phenotype. Generally, it has been demon-
strated that GWAS variants are enriched in DNase I
hypersensitivity sites that mark open chromatin regions,
suggesting these variants are likely regulatory [12].
However, regulatory regions are known to exhibit high

cell-type specificity, making it critical to determine in
which cell type(s) disease-associated variants are acting.
This would facilitate prioritization of disease-relevant
downstream target genes and selection of appropriate
cell and animal models for functional analyses. Statistical
methods that integrate GWAS variants with various
tissue-specific and/or cell-type specific transcriptomic
and epigenomic annotations have been developed to
help prioritize the most relevant tissues and cell types.
One approach to assess the enrichment of a set of

SNPs for regulatory activity in a given tissue- or cell-
type is by testing if the proportion of disease risk vari-
ants residing in epigenomic annotations or being
molQTLs in datasets from various tissues and cell-types
is higher than the proportion of randomly selected SNPs
which are also molQTLs or reside in active epigenomic
annotations. This relatively simple approach was used to
demonstrate enrichment of AD risk alleles in eQTLs of
cells of the innate immune system (monocytes) as op-
posed to cells of the adaptive immune system (T lym-
phocytes) [15].
A different set of methods that relies on partitioning

disease heritability (variation in phenotype that can be
attributed to genetic variation in the population) across
cell type-specific functional annotations have been re-
cently developed and successfully applied to various
complex traits [16, 17]. These methods attempt to quan-
tify the proportion of disease heritability that can be at-
tributed to various functional categories, such as cell-
type specific epigenomic annotations [16]. Stratified LD
Score Regression (S-LDSC) allows for the quantification
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of enrichment of functional annotations by estimating
the proportion of genome-wide SNP heritability that is
explained by the variants residing in those annotations
[16], while accounting for LD and adjusting for annota-
tion classes that are not specific to any cell type to en-
sure the specificity of the tissue or cell-type enrichment
observed (e.g coding regions, UTR, histone marks and
others )[16]. Using S-LDSC, our group has demonstrated
the enrichment of AD risk alleles in myeloid-specific
epigenomic annotations among all other available tissue
and cell type-specific annotations, further implicating
myeloid cell biology in the etiology of AD [18]. We and
others have also recently reported that AD risk variants
are enriched in active enhancer elements in myeloid cells
(including human microglia) but not in other brain cell
types [19], pointing to the activity of these regulatory el-
ements as being likely affected by AD risk variation in a
cell-type specific manner [18, 20].
When relevant functional annotations are not avail-

able, gene expression profiles can be leveraged using
LDSC applied to genes specifically expressed in the tis-
sue and/or cell type (LDSC-SEG), a method that was de-
veloped as an extension to LDSC [21]. This method tests
if genome-wide SNP heritability is enriched in the re-
gions surrounding the genes most specifically expressed
in a tissue or cell type of interest [21]. LDSC-SEG has
been recently used to demonstrate that AD heritability is
also enriched in regions surrounding myeloid-specific
genes [21]. RolyPoly is another method that can leverage

not only bulk but also single-cell gene expression data to
prioritize cell types relevant to the trait of interest
through a polygenic modeling approach that allows for
the possibility of multiple genes contributing to the trait
[22]. It has been used to leverage brain single-cell ex-
pression dataset and identify AD relevant cell types,
demonstrating a significant association between micro-
glia and AD [22].
Rare-variant associations with AD have further rein-

forced the findings from common variant GWAS. AD
genetic association studies interrogating whole genome,
whole exome, and targeted datasets generated from fa-
milial and unrelated cohorts have identified several rare
variants in protein-coding genes, such as ABCA7, ABI3,
PLCG2, SORL1 and TREM2, all of which are specifically
or highly expressed in myeloid cells as compared to
other brain cell types and play critical roles in the innate
immune response, cholesterol metabolism, and endo-
cytosis/phagocytosis [23–27]. Taken together, the find-
ings from both common and rare variant GWAS point
to the pivotal role of myeloid regulatory elements, genes
and pathways in the etiology of AD.

Gene prioritization in AD
Colocalization of AD risk and molecular trait associations
The abundance of common variant associations with
molecular traits, such as gene expression-related traits,
increases the probability that colocalization with a dis-
ease risk association may occur at random. For example,

Fig. 1 The figure depicts the effects non-coding disease associated variants can have on molecular and cellular phenotypes. These effects can be
assessed through QTL analyses that identify significant associations between the dosage of the allele and various traits depicted, including
histone modifications, transcription factor binding, chromatin accessibility and gene expression. These alterations finally lead to altered cellular
phenotypes that subsequently translate to tissue level and organismal dysregulations and disease risk modification
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about 18,262 protein-coding genes had at least 1 eQTL
across all tissues tested in the GenotypeTissue Expres-
sion (GTEx) project, making it highly likely that a
single-variant lookup might in reality be a false-positive
[28]. Various methods have been adapted and developed
to assess the likelihood that two GWAS associations are
overlapping in a genomic region by chance.
Colocalization methods often integrate GWAS associa-

tions with eQTLs to assess the evidence that the same
haplotypes underlie both disease risk and gene expres-
sion effects by utilizing various statistical tests instead of
direct overlap or visual inspection of association signals.
One of the most popular colocalization methods is coloc,
a Bayesian method that tests the hypothesis that there is
a single causal variant that underlies the association be-
tween two traits [29]. Coloc expresses the SNP causality
in a region as a vector, where 1 denotes an associated
variant and 0 denotes a variant that is not associated
with at most one variant being considered associated
with the trait at a time [29]. Coloc integrates over all
possible configurations and computes probabilities of
the data for each configuration [29]. These probabilities
can then be summed and combined with the prior to ac-
cess the support for each hypothesis tested [29]. To this
end, coloc outputs five posterior probabilities where a
large posterior probability for hypothesis three (PP3) in-
dicating strong support for independent causal variants
driving each trait, and a large posterior probability for
hypothesis four (PP4) indicates strong support for a sin-
gle variant driving both traits [29].
A recent example of application of coloc to a large

GWAS of clinically diagnosed AD reported 31 priori-
tized genes across 13 loci in brain and blood/immune
cell types [30]. The study nominated genes in previously
reported loci such as BIN1, SPI1, ABCA7, MS4A2 and
CD2AP as well as genes in novel loci, including KNOP1
in the IQCK locus [30]. A recent preprint reported the
first eQTL map of human microglia [31]. Although the
number of significant eQTLs was modest, coloc analysis
identified multiple loci where an AD GWAS and micro-
glial eQTL signals colocalized [32]. This approach nomi-
nated candidate genes whose expression in microglia is
affected by AD risk alleles, including BIN1 and PICALM
[32]. Additionally, a recent study applied coloc to a large
AD meta-analysis and found 391 colocalisations, nomin-
ating 80 candidate causal genes in 27 AD risk loci. This
approach similarly identified previously nominated
genes, such as BIN1 and PTK2B, but also highlighted
novel genes, including TSPAN14 and APH1 B [33]. Fi-
nally, our recent work has utilized coloc to identify ac-
tive chromatin regions whose hQTLs are colocalized
with AD risk, hence identifying regulatory elements
whose activity is modulated by AD risk variants. We
identified fourteen active chromatin regions in human

monocytes that are likely to be dysregulated by AD risk
variants [20].
Although a powerful tool, coloc assumes that there is

at most one association in each trait tested in the locus
of interest; however, the tool can be used for loci with
multiple independent associations [29]. This assumption
can be tested using different methods that determine if
there are multiple potentially independent statistical as-
sociations in the locus of interest. One such approach is
performing conditional forward stepwise regression,
which entails including the lead SNP as a covariate in a
regression model and evaluating the presence of a re-
sidual signal. If significantly associated SNPs remain,
some of them can be subsequently included as covariates
until no residual signal is observed [10]. Since the
phenomenon of multiple independent association signals
is widespread, other frameworks, such as eCAVIAR,
have been developed to account for the possibility of
multiple causal variants at the locus [34].
In summary, colocalization analyses have been suc-

cessfully utilized to identify non-random co-occurrence
of GWAS associations, allowing for nomination of can-
didate regulatory elements and genes that might modu-
late disease risk.

Exploring mediating effects of molecular phenotypes on
AD risk
While coloc estimates the posterior probability of colo-
calization at one shared causal variant, another set of
methods have been developed to more explicitly test the
effects of gene expression on disease risk or any trait of
interest [35]. Two widely used methods are
transcriptome-wide association study (TWAS) and Pre-
diXcan [35–39].
TWAS uses a panel of reference individuals to build

models that can predict per-gene expression levels from
genotypes at nearby variants, cis-SNPs, that reside within
1MB of that gene [37]. These models are then used on a
set of individuals with available genotype data to impute
gene expression values [35, 37]. These values are then
subsequently used to test for associations between gene
expression and another phenotype measured in the same
set of individuals (i.e., disease diagnosis )[35, 37]. This
approach generates a set of significant gene expression-
trait associations that can be interpreted as candidate
causal genes in their respective loci [35, 37]).
TWAS has been successfully applied in the context of

AD to identify associations between splicing QTLs and
AD risk, thereby identifying likely causal genes in AD
risk loci and proposing the mechanism of action of dis-
ease risk non-coding variants [40]. Specifically, Raj et al.
conducted a TWAS study integrating intronic excision
levels obtained from dorsolateral prefrontal cortex ex-
pression data with AD GWAS data and reported that
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alternative splicing is a likely mechanism of action in the
PICALM, CLU and PTK2B loci [40].
Although TWAS offers a useful framework for nomin-

ation of candidate causal genes through expression-trait
associations, there are several limitations that one needs
to be aware of when examining loci that are significant
in a TWAS study [36]. High inter-individual correlation
in gene expression which can stem from co-regulation
tends to lead to multiple significant hits in a locus. Add-
itionally, since disease associated variants are often
enriched in tissue-specific eQTLs, the use of disease-
relevant tissue and/or cell type for TWAS is often rec-
ommended [14, 36]. It has previously been reported that
the use of eQTL datasets from non disease-relevant tis-
sues might lead to significant hits that exclude the causal
gene(s) in the loci of interest ([14, 36]). Taken together,
these findings suggest that selection of the tissue and/or
cell type for TWAS analysis and interpretation of the re-
sults should be carefully done, taking into account the
considerations mentioned above.
MetaXcan is a set of tools for integrating GWAS with

other molecular GWAS associations to study the medi-
ating effects of these phenotypes onto disease risk [38].
One of them, S-PrediXcan, allows for identification of
associations between complex traits, such as gene ex-
pression and disease risk, using summary statistics. This
is advantageous as it does not require individual level
genotype data, which are often hard to obtain [38]. S-
PrediXcan uses a similar gene expression imputation ap-
proach as TWAS, but implements a different statistical
model [38]. TWAS uses Bayesian Sparse Linear Mixed
Models (BSLMM) that include both sparse and poly-
genic components, allowing for a small set of predictor
variants with large effect sizes as well as variants that
contribute only a marginal effect to the overall predic-
tion [38]. Given a largely sparse architecture of gene ex-
pression traits, PrediXcan avoids adding a polygenic
component and only uses the sparse model [38, 41]. A
recent study used an extension of PrediXcan, S-
MultiXcan, that can improve the power to detect associ-
ations between complex traits by utilizing data from
multiple tissues while accounting for cross-tissue correl-
ation [42]. Using S-MultiXcan, Gerring et al. integrated
eQTLs from GTEx and CommonMind Consortium
(CMC) with AD GWAS data and identified 73 genes in
GTEx and 12 genes in CMC whose expression was asso-
ciated with AD [42].
Another method that allows us to study the causal or

pleiotropic relationships between disease-based and mo-
lecular GWAS associations is Summary-data-based
Mendelian Randomization (SMR), which has been suc-
cessfully applied to AD GWAS. SMR is a form of instru-
mental variable analysis that exploits a natural
experiment (i.e., genetic variants are assigned to

individuals randomly at birth) to assess causal relation-
ships between phenotypes [43]. This approach is akin to
a randomized trial and utilizes variants that are corre-
lated with an exposure (i.e., gene expression) to get
insight into the relationship between that exposure and
outcome (i.e., disease status )[43]. Specifically, SMR
computes the effect size of a gene on a phenotype of
interest by computing the ratio of the SNP effect sizes in
GWAS and eQTL studies and further estimating its vari-
ance [44]. SMR also implements a method to distinguish
between causality/pleiotropy and linkage through a het-
erogeneity in dependent instruments (HEIDI) test [44].
Unlike TWAS and S-PrediXcan, SMR does not use mul-
tiple SNPs to test for the association between a molecu-
lar trait and a disease phenotype, which can be
considered as a disadvantage, but also provides an op-
portunity for selecting candidate causal SNPs by examin-
ing effect sizes of single SNP gene to trait associations
[38, 45].
Marioni et al. have recently conducted a GWAS using

self-reported parental history of AD (i.e., AD-by-proxy)
and undertook SMR integrating with eQTL and meQTL
data from dorsolateral prefrontal cortex, identifying
highly significant associations with expression of CR1,
TOMM40 and KAT8 amongst other genes [46]. Given
the strong enrichment of AD risk variants in myeloid ac-
tive enhancers, we took a myeloid-centric approach in
using SMR to link identify putative causal associations
between variant-harboring active chromatin regions and
gene expression by integrating hQTLs with eQTLs [20].
This approach identified fourteen active chromatin re-
gions likely to be dysregulated by AD risk variants and
their putative target genes [20]. We then utilized SMR
to subsequently identify significant gene expression and
AD risk associations, mapping a path from myeloid en-
hancer activity to gene expression to disease risk modu-
lation [20,47]. This approach allowed us to nominate
candidate causal genes in twelve loci, including BIN1,
SPI1, ZYX, RABEP1 and SPPL2 A [20].
Taken together, the methods described above integrate

multiple GWAS associations to begin deciphering the
causal path between genetic variation, molecular pheno-
types and disease risk. They have successfully been ap-
plied to AD, nominating candidate causal genes that
likely modulate the risk for AD.

Integration of epigenomic and chromatin interaction data
for gene prioritization
Since common variants identified by GWAS rarely res-
ide within coding sequences, epigenomic annotations of
regulatory elements have become important for explor-
ing the likely function of non-coding variants. Multiple
large-scale consortia undertook an effort to generate epi-
genomic annotations, such as profiles of histone marks,
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chromatin accessibility, transcription factor binding sites
and DNA methylation among others, in many cell types
and tissues [48, 49]. These can be utilized not only for
functional annotation of genetic variants, but also inte-
grated with chromatin interaction assays. For example,
HiChIP allows for identification of long-range interac-
tions that are associated with the protein or histone
mark of interest [50]. Another assay, promoter-capture
Hi-C, uses biotinylated RNA oligomers that are comple-
mentary to all annotated promoters, thus revealing long-
range promoter-interacting regions that can contain en-
hancers, silencers or other promoters [51]. These assays
are extremely valuable in examining the likely roles of
non-coding variants in mediating chromatin interactions
and in identifying the genes that are likely regulated by
the non-coding regulatory elements that harbor these
variants and interact with target gene promoters. To this
end, these data have been utilized in multiple functional
mapping studies of AD.
We recently examined which genes are likely affected

by myeloid active enhancers that harbor AD risk alleles
by linking them to target genes through promoter-
capture Hi-C and eQTL data from myeloid cells [20].
This approach identified candidate causal genes in 16
loci, including AP4M1, BIN1, MS4A6A, PILRA, PTK2B
and RABEP 1[20]. Nott et al. took advantage of proxim-
ity ligation-assisted ChIP-seq (PLAC-seq) to generate
chromatin interaction maps between active promoters
(marked by H3K4me3) and distal regulatory elements in
microglia [19]. By using ATAC-seq and PLAC-seq data
in human microglia, regulatory elements containing AD
risk variants were linked to their likely target genes, cor-
roborating the evidence for many genes identified by our
group [19]. Corces et al. generated chromatin interaction
maps using HiChIP for H3K27ac, which marks both ac-
tive enhancer and promoters, as well as single-cell chro-
matin accessibility maps in multiple brain regions to
study the likely mechanisms of non-coding disease risk
variants [52]. This identified multiple loci with
microglia-specific open chromatin regions and nomi-
nated genes that are putatively affected by AD risk vari-
ants [52].
Combined these efforts demonstrate the utility of

chromatin interaction data to provide insights into the
chromatin architecture of AD risk loci and to nominate
candidate causal genes in those loci.

Variant prioritization in AD
Bayesian fine-mapping for variant prioritization
One of the main goals of fine-mapping is to utilize the
strength of the association of variants in the locus with
the phenotype of interest, LD information and, molQTL
and/or epigenomic data to pinpoint the most likely can-
didate causal variants. Various statistical methods for

fine-mapping have been developed in recent years [10].
Heuristic approaches to fine-mapping usually involve
considering SNPs with a certain level of correlation to
the lead SNP, visually examining the LD in the locus
and utilizing functional annotations to select strong can-
didate causal variants. This approach does not account
for joint effects of variants on the phenotype of interest
and lacks a systematic approach to evaluate the likeli-
hood of the variant(s) to be causal. More robust ap-
proaches, such as Bayesian methods, utilize a statistical
framework to estimate the posterior probability of each
variant to be causal.
Bayesian fine-mapping tools, such as CAVIAR and

PAINTOR, require GWAS summary statistics and an
LD matrix ideally from the same individuals in which
the GWAS was conducted [53–57]. If external LD refer-
ence panels are to be used to generate the LD matrix,
the putative causal variants should be included in both
summary statistics and an LD panel and the effect sizes
of these variants should be the same in these popula-
tions [54]. Fine-mapping methods are sensitive to mis-
matches between GWAS data and LD panels, and can
lead to inflated posterior probabilities if the LD panel is
not derived from the same individuals or from a cohort
with a very similar genetic composition [56]. Applying
these methods results in posterior probabilities for each
variant to be causal that can be used to prioritize vari-
ants for functional validation. Ranking posterior prob-
abilities and setting a certain threshold ɑ for the sum of
these posterior probabilities (e.g 95%) leads to the identi-
fication of credible sets, which are groups of variants
that should contain causal variants(s) with the probabil-
ity of ɑ [58].
CAVIAR was recently applied by Zhou et al. to fine-

map the extended APOE locus and identify potential
additional causal non-coding variants in the region that
are APOE-ε4- independent [57,59]. Using this frame-
work they identified nine non-coding variants in the
APOE locus, which were associated with altered gene ex-
pression in APOE and other nearby genes in brain and
blood [59].
PAINTOR is a Bayesian fine-mapping method that

can incorporate functional annotations into the fine-
mapping procedure [53]. In brief, PAINTOR gives
higher weights to the variants that reside in certain func-
tional annotations due to the fact that such localization
makes it more likely to indeed be functional [55]. These
weights are derived in an agnostic manner from the data
itself with annotations that are highly enriched in GWAS
loci of interest receiving higher weights [55]. Similar to
other Bayesian fine-mapping tools, the output of PAIN
TOR is a posterior probability for each variant to be
causal that can be further used in prioritization for
follow-up functional studies [55].
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We utilized PAINTOR in three loci (BIN1, MS4A and
ZYX) using summary statistics and genotype data from
the Alzheimer’s Disease Genetics Consortium (ADGC)
case-control cohort as well as myeloid epigenomic anno-
tations [20]. For the loci that were not significant in
ADGC (but significant in larger AD GWAS) and were
thus inappropriate for fine-mapping with PAINTOR, we
developed an alternative strategy that prioritized disease-
associated variants residing in enhancers in myeloid cells
with strong evidence for potential disruption of binding
motifs as well as an effect on gene expression [20]. Com-
bined, these approaches allowed us to prioritize candi-
date causal variants and generate testable hypotheses
about their likely mechanisms of action in seven AD risk
loci [20]. Although larger fine-mapping studies of AD
GWAS are needed, the availability of appropriate LD ref-
erence panels and genotype data from GWAS individ-
uals as well as relevant epigenomic annotations and
eQTL data from myeloid cells will be crucial for the suc-
cess of these efforts.

Variant annotation and functional impact prediction
Integration of epigenomic annotations to infer the likely
functional impacts of non-coding variants has proven
very fruitful in pinpointing candidate causal variants in
disease-associated loci. For example, open chromatin re-
gions, profiled with assays such as ATAC-seq, could
point to variants that reside in nucleosome-depleted re-
gions, are more likely to be regulatory and potentially
disrupt binding of proteins in that region [60]. Profiling
of histone modifications and transcription factor binding
sites and integration of these data with the GWAS data
could point to variants that reside within regulatory ele-
ments and give a hint about their function. For example,
genomic regions enriched in the H3K4me3 mark usually
point to gene promoters, H3K4me1 most often marks
active and poised enhancers, while H3K27ac marks ac-
tive enhancers and promoters [61]. Hence, localization
of variants to these marks may suggest the type of regu-
latory element this variant is likely disrupting. Chroma-
tin interaction assays can also be instrumental in
identifying the targets (e.g., genes or other regulatory el-
ements) of the regulatory elements in which disease-
associated variants operate. These variant annotations
can be used in simple heuristic fine-mapping ap-
proaches, where a group of variants are first selected
based on their correlation with the lead SNP and further
screened for their likely regulatory potential using avail-
able epigenomic and regulatory annotations. It should be
noted that understanding the most likely causal cell
type(s) and cell state(s) in the etiology of the disease of
interest is critical to dissecting the regulatory potential
of disease risk variants. In recent years databases, such
as HaploReg and RegulomeDB, have integrated many

omics datasets across a multitude of tissues and cell
types to automate the variant annotation process, mak-
ing it fairly straightforward to explore the group of vari-
ants for their likely regulatory potential [62 ,63].
Once variants are prioritized through these fine-

mapping approaches, their likely mechanism of action
needs to be identified. To this end, several approaches
have been developed to predict the functional impact of
a variant. One such approach is used by HaploReg,
where variants are annotated for their effects on regula-
tory motifs through position weight matrices (PWMs
)[64]. PWMs are then used to compute the change in
log-odds score due to the variant that reflects the effect
of this variant on the motif, i.e. disruption or creation of
a binding motif [64]. Machine learning models have
been developed to predict the impact of non-coding gen-
etic variation on a range of epigenomic features [65, 66].
Taken together, the described approaches are import-

ant for understanding the likely regulatory elements
(and their targets) that might be affected by the presence
of disease-associated variants. These methods give
insight into likely mechanisms underlying the statistical
associations at disease risk loci and facilitate the gener-
ation of mechanistic hypotheses that can be further
tested in functional experiments.

Putting it all together: the successes and challenges of
pinpointing candidate causal variant(s) in AD risk loci
The efforts described above nominated regulatory ele-
ments and AD candidate causal genes by studying the
regulatory landscape of myeloid cells and integrating
genetic, expression and chromatin data. Although these
studies identify genes that can be subsequently studied
through functional experiments and can give insight into
common pathways affected by disease risk variants, they
do not pinpoint candidate causal variants in disease risk
loci. Non-Mendelian AD is a complex polygenic disease
caused by dysregulation of entire biological networks
due to risk variants with small to moderate effect sizes
as opposed to single gene mutations with large effect
sizes. Disruption of a transcription factor binding site by
a non-coding disease risk variant can impact the activity
of a regulatory element, leading to subsequent changes
in chromatin conformation in the locus and altering in-
teractions with other regulatory elements such as pro-
moters, leading to changes in gene expression. Since
regulatory elements like enhancers often interact with
more than one promoter, genetic variation in these ele-
ments can lead to expression changes in multiple target
genes (sometimes megabases away from the association
signal) and other more complex downstream changes
[67]. Thus, it is likely that disease-associated variants
modulate disease risk by altering regulatory elements
and in turn gene regulatory networks and gene
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expression programs in intricate ways, e.g., in specific
cellular states or spatio-temporal patterns (e.g myeloid
cells in the developing versus adult brain, or in the brain
versus peripheral tissues like blood). Additionally, AD
risk genes are likely to interact with each other and
modulate disease risk by affecting biological pathways
and cellular functions in complex ways. Hence, studying
these non-coding variants in human cells and mouse
models might provide greater insight into disease patho-
genesis. To this end, understanding the functional im-
pact of AD risk alleles in all disease-relevant contexts
and at multiple scales (i.e., molecular and cellular) is
critical to elucidate how they may impact disease
susceptibility.
Previous studies have employed statistical fine-

mapping approaches or integrated eQTL and epige-
nomic data to nominate candidate causal variants in AD
risk loci. Recently Amlie-Wolf et al. have applied INFE
RNO, a method that integrates genomic annotations,
transcription factor binding information and eQTLs
from various tissues with GWAS summary statistics, to
prioritize AD candidate functional variants [68]. Variants
were prioritized by filtering for Approximate Bayes Fac-
tors (ABF) derived from Bayesian colocalization analyses
with eQTLs, likely effects on transcription factor bind-
ing, enhancer overlaps and concordance between the tis-
sue category of the colocalizing eQTL signal and the
enhancer epigenomic annotation [68]. Collectively, the
fine-mapping approaches in this study identified candi-
date causal variants in 10 regions with four genes
(EPHA1, CD33, BIN1 and CD2AP) being subsequently
nominated for experimental validation [68].
In our recent work, we utilized a combination of heur-

istic and Bayesian fine-mapping approaches along with
motif disruption predictions to prioritize candidate
causal variants and generate hypotheses about their
likely mechanisms of action in myeloid cells in seven
AD risk loci [20]. For example, we identified a variant al-
lele (rs636317-T) in the MS4A locus that likely disrupts
an anchor CTCF binding site in the locus, likely leading
to dysregulation in the local chromatin structure and in-
creased expression of MS4A4A and MS4A6 A [20]. We
also identified two alleles in the BIN1 locus (rs6733839-
T and rs13025717-T) that reside in PU.1 binding sites in
a myeloid enhancer, disrupt motifs and likely binding of
MEF2 and KLF transcription factors, leading to altered
expression of BIN 1 [20].
Corces et al. developed a machine learning approach

to score the effects of variants on chromatin accessibil-
ity, used additional complementary computational ap-
proaches and integrated these results with HiChIP data,
colocalization analyses as well as information about tran-
scription factor binding motifs [52]. This comprehensive
approach resulted in the nomination of multiple AD risk

variants, including the same variants in the MS4A and
BIN1 loci identified by our study described above [52].
Young et al. also nominated rs6733839-T in the BIN1

locus as the likely AD risk-increasing allele using
ATAC-seq data from primary human microglia and
fine-mapping approaches [32]. The group reported a
strong colocalization signal with microglial eQTL signal
at the BIN1 locus as well as significant allele-specific
chromatin accessibility at rs673383 9[32].

Functional validation of non-coding disease risk
variants
Since non-coding variants in GWAS loci likely affect the
activity of regulatory elements which in turn leads to
dysregulation of gene expression programs, an important
step in establishing the causal relationship between a
non-coding variant and the associated trait is the subse-
quent experimental validation of bioinformatic predic-
tions and further characterization of its functional
impact on gene expression in disease-relevant cell types,
states and contexts. Statistical methods described previ-
ously, including Bayesian fine-mapping and variant an-
notation, can provide robust hypotheses about the likely
mechanism of the variant that can be evaluated in func-
tional assays. If upstream fine-mapping analyses identify
likely transcription factors bound at the variant site,
allele-specific ChIP-quantitative PCR (qPCR) assays can
be used to validate predicted preferential binding to a
certain allele [69]. However in theory allele-specific
qPCR tests the effect of the haplotype not a single
variant.
Massively parallel reporter assays can identify enhan-

cer activity- and expression-modulating non-coding vari-
ants, aiding in prioritization of likely functional
candidate causal variants [70, 71]. Generally, these
methods utilize a vector, containing a reporter gene
(e.g., luciferase or GFP), a minimal promoter and a regu-
latory sequence containing the variant of interest
inserted into the same plasmid [70]. After a plasmid li-
brary containing all variants to be tested is transfected
into cells cultured in vitro, high throughput sequencing
can be performed to determine the effects of the regula-
tory sequences on gene expression [70]. SNPs can be in-
corporated into these assays to study if there is a
difference in gene expression between the alleles [70].
Although these assays do not reproduce in vivo cellular
chromatin architecture, they can test a large number of
variants before proceeding to more involved functional
validation experiments.
Recent developments in genome editing tools, such as

the CRISPR/Cas9 system, can be used to test the func-
tional impact of altering a single variant. If upstream
fine-mapping analyses offer a viable hypothesis of the
variant’s mechanism of action, coupling single-
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nucleotide CRISPR-editing with functional readouts pre-
dicted to be altered, such as transcription factor binding,
chromatin interactions, gene expression or other mo-
lecular and cellular phenotypes, can powerfully establish
causality between the variant or a variant-harboring
regulatory element and the trait of interest [45]. CRIS
PRa and CRISPRi systems have also been used to test
the effect of regulatory elements, and a recently reported
novel system, enCRISPRa and enCRISPRi, can alter
enhancer-associated chromatin modifications, enabling
investigation of relationships between regulatory ele-
ments and gene expression [72].
Taken together, the approaches described here, al-

though non-exhaustive, can be very powerful in testing
some of the regulatory elements and variants derived
from fine-mapping procedures to validate and further
characterize the functional impact of the disease-
associated non-coding variants.

Future directions
Although the studies that attempted fine-mapping of
AD risk loci to date have converged on the same vari-
ants in multiple loci, including BIN1 and MS4A, the ma-
jority of candidate functional variants in AD risk loci
remain to be identified. There are many challenges that
inhibit fine-mapping efforts of AD risk loci. Firstly, the
largest GWAS studies in AD are large-scale meta-
analyses, which makes gaining access to the genotype
data from these individuals difficult. Since availability of
appropriately large and representative LD panels for
GWAS studies are critical for the success of statistical
fine-mapping efforts, their lack can make fine-mapping
efforts challenging [56]. Secondly, although previous
studies have demonstrated a reproducible enrichment of
AD risk alleles in myeloid epigenomic annotations and
eQTLs, the specific myeloid cell type(s), cell state(s), cel-
lular activity (ies) and spatio-temporal contexts in which
they act to modify AD risk remain unclear. Recent find-
ings indicate that the activation state of macrophages
did not alter the enrichment of AD heritability in their
epigenomic annotations, suggesting that AD risk alleles
might be affecting core myeloid gene regulatory pro-
grams and cellular functions [73]. It has been reported
that the loss of TREM2 affects the functions of macro-
phages in the central nervous system (CNS) and in mac-
rophages in adipose and hepatic tissues during obesity,
hinting that the AD-associated TREM2 variants might
act in multiple macrophage populations within and out-
side of the CNS, at baseline or in conditions of lipid
overload and metabolic stress [74, 75].
There are, however, many exciting avenues that the

fine-mapping effort of AD GWAS can undertake in the
future. Firstly, as mentioned earlier, generation of more
large-scale and fine-grained datasets with paired

transcriptomic, epigenomic, chromatin interactions and
genotype data in myeloid cells challenged with disease-
relevant stimuli, such as lipid-rich cellular debris, will be
essential to validate and expand current findings and
nominate novel targets for experimental validation. Add-
itionally, although AD risk alleles are reproducibly
enriched in myeloid epigenomics annotations and regu-
latory effects, they are unlikely to explain the entirety of
AD risk signals, highlighting the need for generating
molQTL datasets from other brain and peripheral cell
types, especially during aging and disease-relevant condi-
tions. Secondly, GWAS data from non-European popu-
lations will undoubtedly be critical in the success of AD
fine-mapping efforts [76]. Specifically, African popula-
tions are characterized by greater levels of genetic diver-
sity, more extensive levels of population substructure
and, most importantly, shorter LD blocks (partially due
to more time allowed for recombination) than in non-
African populations [77]. This creates an opportunity to
leverage GWAS data from African and non-African pop-
ulations to dissect disease-association signals with com-
plex LD patterns and better fine-map these regions to
pinpoint candidate causal variants. Hence, generation of
additional molQTL and epigenomic datasets as well as
expansion of AD case-control GWAS from individuals
of African ancestry would be instrumental in decipher-
ing the candidate causal genes and variants at AD risk
loci. Thirdly, although in this review we focused on
common non-coding variants, rare regulatory variation
could also be explored in the context of AD and help ex-
plain some of the association signals. Finally, although
human cells cultured in vitro represent valid and con-
venient systems for studying various molecular pheno-
types, studying non-coding genetic variation in mouse
models will allow for more in-depth evaluation of the
role of these variants in myeloid and other cell types. A
recent study by Mancuso et al. demonstrated that iPSC-
derived microglia were transplanted into the mouse
brain, successfully engrafting and transcriptionally re-
sembling human ex-vivo microglia [78, 79]. This finding
opens the door for implantation of engineered or
patient-derived iPSC-derived microglia harboring causal
variants or altered disease-relevant regulatory elements
to examine their mechanism of action in vivo, in the
aging and diseased brain. The hope is that the elucida-
tion of genetic risk mechanisms at GWAS loci will aid
the translation of genetic associations to novel drug tar-
gets and therapeutics as reviewed by Sierksma et al. [80].

Conclusions
AD GWAS have identified more than 40 loci associated
with the disease [9]. Functional mapping, e.g., identifica-
tion of causal cell types, genes and variants, is an under-
taking that is critical to our understanding of AD
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pathogenesis and ability to discover disease-modifying
treatments. In this review, we discussed recent findings
that pointed to the role of myeloid cells in the etiology
of AD. Multiple studies highlighted the enrichment of
AD risk alleles in myeloid epigenomic annotations (e.g.,
active enhancers), myeloid eQTLs as well as in genes
specifically expressed in myeloid cells, including micro-
glia [15, 18–21]. eQTL-based approaches, such as
TWAS and SMR, demonstrated significant associations
between AD risk and gene expression and nominated
multiple candidate causal genes, many of which function
within the endolysosomal compartment in myeloid cells
[20]. These findings were also reinforced by integrative
approaches that leveraged myeloid epigenomic annota-
tions as well as chromatin interaction data to nominate
candidate causal genes likely modulating AD risk. Fi-
nally, variant fine-mapping approaches resulted in iden-
tification of multiple candidate causal variants and
dissection of their likely mechanisms of actions for fur-
ther functional validation in cell and animal models.
Functional mapping has provided unprecedented

insight into AD architecture by highlighting candidate
causal variants, regulatory elements, genes, pathways and
cell types that likely modulate disease risk. Performing
larger GWAS in multiple ancestries coupled, the gener-
ation of more diverse, cell type- and cell state-specific
datasets as well as ensuring that individual-level data or
LD matrices are shared along with GWAS summary sta-
tistics in standard formats will propel these efforts fur-
ther and help uncover disease risk mechanisms in more
AD risk loci [81]. Follow-up functional studies to inter-
rogate the roles of AD risk variants and genes in cells
and animal models will be critical to shed light on the
mechanisms of disease risk modification. Combined,
these efforts will undoubtedly deepen our understanding
of AD pathogenesis, bringing us closer to identification
of disease-modifying treatments for this devastating
disease.
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