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Abstract

Mass spectrometry-based proteomics empowers deep profiling of proteome and protein posttranslational
modifications (PTMs) in Alzheimer’s disease (AD). Here we review the advances and limitations in historic and
recent AD proteomic research. Complementary to genetic mapping, proteomic studies not only validate canonical
amyloid and tau pathways, but also uncover novel components in broad protein networks, such as RNA splicing,
development, immunity, membrane transport, lipid metabolism, synaptic function, and mitochondrial activity. Meta-
analysis of seven deep datasets reveals 2,698 differentially expressed (DE) proteins in the landscape of AD brain
proteome (n = 12,017 proteins/genes), covering 35 reported AD genes and risk loci. The DE proteins contain cellular
markers enriched in neurons, microglia, astrocytes, oligodendrocytes, and epithelial cells, supporting the
involvement of diverse cell types in AD pathology. We discuss the hypothesized protective or detrimental roles of
selected DE proteins, emphasizing top proteins in “amyloidome” (all biomolecules in amyloid plaques) and disease
progression. Comprehensive PTM analysis represents another layer of molecular events in AD. In particular, tau
PTMs are correlated with disease stages and indicate the heterogeneity of individual AD patients. Moreover, the
unprecedented proteomic coverage of biofluids, such as cerebrospinal fluid and serum, procures novel putative AD
biomarkers through meta-analysis. Thus, proteomics-driven systems biology presents a new frontier to link
genotype, proteotype, and phenotype, accelerating the development of improved AD models and treatment
strategies.
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Background
Alzheimer’s disease (AD) is an aging-associated neuro-
degenerative disorder, and as the most common form of
dementia, afflicts approximately 5.8 million people in the
United States [1]. It is estimated that 50 million people
worldwide live with Alzheimer’s and other types of de-
mentias [2]. As human populations age progressively,

the economic burden AD poses to the healthcare system
currently stands at $305 billion in the U.S., and in the
near future, will grow immensely [1]. Typical onset of
AD occurs after the age of 65 (late onset AD, LOAD),
though less than 5 % of AD cases occur early (early onset
AD, EOAD), while 1–2 % are inherited within families
(familial AD) [3]. The primary clinical manifestations of
the disease include profound cognitive decline, progres-
sive memory loss, retrograde and anterograde amnesia,
accompanied by severe histopathological changes, such
as degeneration of the hippocampus and subsequent loss
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of cortical matter [4]. AD often manifests with additional
comorbidities, such as movement and psychological dis-
orders, as well as various sleep disturbances [1]. These
heterogeneous symptoms confound diagnosis of AD in
some cases [5]. Extensive molecular studies have re-
vealed the pathological hallmarks of this malady: amyl-
oid plaques comprised of amyloid-β (Aβ) peptides, and
neurofibrillary tangles (NFT) containing hyperpho-
sphorylated tau, which are used to categorize the disease
stage (e.g. Braak stages) [6, 7]. Despite active investiga-
tion and drug development over decades [3, 8], and re-
cent controversial approval of aducanumab (also known
as Aduhelm) for AD treatment [9], precise causes of this
brain degeneration are not fully understood, and a cure
for this devastating disease still remains elusive.
The fundamental insights into AD pathogenesis come

from complementary genetic/genomic and biochemical/
proteomic studies. In 1984, Glenner and Wong isolated
Aβ peptide from plaques in AD patients [10], which was
later partially sequenced [11, 12], leading to subsequent
gene cloning of β-amyloid precursor protein (APP) [13,
14]. This biochemical finding was later corroborated by
mapping genetic mutations in causative AD genes, in-
cluding APP in 1991 [15], and presenilins (PSEN1/
PSEN2) in 1995 [16, 17]. The integration of biochemical
and genetic evidence substantiates an intuitive molecular
mechanism to AD, whereby the sequential proteolytic
cleavage of APP by β-secretase (BACE1) and γ-secretase
(containing PSEN1/PSEN2) produces amyloidogenic Aβ
peptides [18–20]. Together, these results have ushered
in the amyloid hypothesis, contending that Aβ species
from APP cleavage play a central role in driving AD
pathogenesis [21–23]. In parallel, hyperphosphorylated
tau was purified as the dominant component of neuro-
fibrillary tangles in AD brain tissues around 1986 [24–
27]. Mutations to the tau gene (MAPT) were linked to
several other neurodegenerative diseases, such as fronto-
temporal dementia (FTD) [28–30]. Again, biochemical
and genetic evidence has established the tau hypothesis
to propose its critical role in AD progression [31]. Ex-
periments from the 2000s suggest that Aβ aggregates
prior to cognitive defects, and later, downstream tau ac-
cumulation drives neurotoxicity [32–34]. The current
paradigm has shifted from Aβ deposition towards under-
standing the toxicity of different Aβ forms, especially
soluble Aβ oligomers [35]. Misfolded Aβ and tau may
also transmit as “pathological seeds” during neurodegen-
eration [36].
Alternatively, a myriad of other models have been pos-

tulated: cholinergic [37, 38], calcium [39, 40], mitochon-
drial [41, 42], membrane trafficking [43, 44],
inflammatory [45–47], lymphatic [48, 49], microorgan-
ism infection [50–52], neurovascular [53, 54], and cellu-
lar phase [55] hypotheses, although these alternative

concepts are still entangled with the framework of amyl-
oid and tau theories. The fact remains that Aβ may be
essential, but not sufficient, to cause AD [56]. Neverthe-
less, the consensus molecular pathways, cellular circuits,
and pathophysiological mechanisms mediating Aβ and
tau toxicity are not fully understood yet.
Discoveries in the AD field have been accelerated by

the innovations of large-scale sequencing technologies in
genomics [57] and proteomics [58]. In addition to APP,
PSEN1, and PSEN2, early genetic studies discovered the
major AD risk gene of APOE4 in 1993 [59, 60]. Current
high-throughput genetic/genomic analysis revealed new
risk genes, such as TREM2 [61, 62] and UNC5C [63],
and more than 160 possible risk loci linked to amyloid,
tau, endocytosis, and immunity (collected in Supplemen-
tary Table S1) [64–68]. In 2014, the National Institutes
on Aging initiated the Accelerating Medicines Partner-
ship (AMP)-AD program to leverage multidisciplinary
strategies across academia and industry, aiming towards
the discovery of novel therapeutic targets and bio-
markers [69]. The multi-omics approach offers an indis-
pensable, systematic tool for understanding AD’s
complexity. While the AD genetics field has been
reviewed extensively over the years [70–73], here we in-
tend to review the field of AD proteomics. Searching
PubMed’s literature repository with terms “Alzheimer’s
or Alzheimer” and “Proteomics or Proteome” returned
more than 2,000 publications, and over 300 papers in
2020, although the AD proteomics field emerged at the
turn of the millennia and has steadily increased in prom-
inence. Much of the recent work endeavors to profile
deep brain proteomes [74–77], analyze large sample
sizes [78], dissect sub-proteomes [79–81], investigate
complex PTM patterns [74, 82], and identify new bio-
marker candidates in biofluids [74, 75, 83–85]. We dis-
cuss the historical, current, and future status of protein
analytical technologies and application, and provide a
holistic view of the AD proteomic landscape by meta-
analysis, unraveling new insights into AD pathogenesis
and potential biomarkers.

The Evolving Technologies of Protein Analysis
and Mass Spectrometry
The major events contributing to mass spectrometry
(MS)-based protein analysis during the last century are
outlined (Fig. 1). Preceding MS-based proteomic ana-
lysis, Pehr Edman reported a technique (Edman degrad-
ation) for sequencing the amino acids of proteins in
1967 [86], but only up to 30 amino acids could be se-
quenced and each residue took approximately one hour
[87]. It was this technique with which Wong et al. se-
quenced the first 28 residues in the Aβ peptides [11].
Several groups provided proof-of-principle evidence for
sequencing amino acids of oligopeptides with
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commercial mass spectrometers that became available in
the 1960s [88–91]. However, the MS application in pro-
tein sequencing was limited until the complete develop-
ment of two Nobel Prize-winning methods for soft
ionization in late 1980s [92]: matrix-assisted laser de-
sorption/ionization (MALDI) [93] and electrospray
ionization (ESI) [94]. MALDI was a popular ionization
technique early on, and ESI is now the dominant
method for proteomic analysis within complex mixtures
[95]. The development of these technologies has made
possible the high throughput analysis of proteins by
mass spectrometry.
MS-based proteomic analysis often consists of three

major steps (Fig. 2): (i) pre-MS sample processing, (ii)
MS data acquisition, and (iii) post-MS bioinformatics;
each step offers a wide variety of strategies to achieve
final analytical goals of protein identification and quanti-
fication. For instance, one may choose top-down or

bottom-up strategies, which analyze full-length proteins
[103] or peptides (e.g., trypsin digested proteins) [104],
respectively. Due to the highly diverse biochemical prop-
erties within the proteome, the top-down approach of
analyzing all full-length proteins under one uniform
condition is challenging. One of the most comprehensive
top-down studies identified more than 3,000 protein iso-
forms from about 1,000 human genes [105]. In contrast,
bottom-up proteomics relies on the analysis of peptides
digested from full-length proteins, making the samples
biochemically homogenous and thus improving prote-
ome coverage to more than 10,000 proteins, although
there is a gap to map identified peptides to proteins
[106–108]. In bottom-up proteomics, digested peptides
are usually separated by liquid chromatography (LC),
ionized by ESI, and analyzed by tandem mass spectrom-
etry (MS/MS or MS2) [109–111]. Isoelectric focusing is
also used for high-resolution peptide separation [112]. It

Fig. 1 Major historical events in mass spectrometry and AD research. Edman degradation is also included. The AD proteomics studies are
highlighted. The information is compiled from several online resources (https://www.nature.com/collections/aajfehieag, https://www.hupo.org/
Proteomics-Timeline, https://masspec.scripps.edu/learn/ms, https://www.alzforum.org/timeline, and https://www.alzheimers.net/history-of-
alzheimers) and references [74, 75, 79, 80, 82, 96–102]. MS detection instruments include sector MS, time-of-flight (TOF), quadrupole, Fourier-
transform ion cyclotron resonance (FTICR), triple quadrupole, and orbitrap. Common ionization methods include atmospheric pressure chemical
ionization (APCI), electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI), desorption electrospray ionization (DESI), and
direct analysis in real time (DART). Biomolecules may be fractionated by nanoscale liquid chromatography (LC) with sub-2 μm resin to improve
resolution, or by multi-dimensional protein identification technology (MudPIT). MS precursor ions can be fragmented by collision-induced
dissociation (CID), electron-capture dissociation (ECD), electron-transfer dissociation (ETD), or higher-energy collisional dissociation (HCD).
Quantitative strategies include two dimensional polyacryl amide gel electrophoresis (2D PAGE), isotope-coded affinity tag (ICAT), stable isotope
labeling by/with amino acids in cell culture (SILAC), tandem mass tag (TMT), isobaric tags for relative and absolute quantitation (iTRAQ), and the
data-independent acquisition (DIA) methods. Selected/multiple reaction monitoring (SRM/MRM) is a MS technique for analyzing pre-defined
molecules. Database search tools contain SEQUEST, MASCOT, and the target-decoy strategy. CAA: cerebral amyloid angiopathy; LCM: laser capture
microdissection; GWAS: genome-wide association study; CSF: cerebrospinal fluid; and FDA: the United States Food and Drug Administration
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should be noted that MS2 itself is a powerful separation
tool, enabling the selection of a single peptide from
other co-eluted peptides based on the mass-to-charge
ratio (m/z). Because of the sensitivity, throughput, ro-
bustness, and proteome coverage, the bottom-up
method is commonly applied to untargeted proteome
analysis.
Numerous bottom-up proteomics strategies are avail-

able, categorized into label-free and stable isotope label-
ing methods. The label-free methods have evolved from
semi-quantitative spectral counting, which estimates the
level of a protein by the total number of assigned MS2
spectra [113], to more accurate extracted ion currents in
MS1 [114] or MS2 scans [115, 116]. The stable isotope
labeling methods have begun with chemical protein la-
beling, such as Cys-reactive ICAT [117], amine-reactive
dimethyl labeling [118], and then metabolic protein la-
beling like SILAC [119, 120], in which peptide/protein
quantification is attained by MS1 peaks from the pooled
samples with differential labels. However, the pooling in-
creases the complexity of MS1 spectra, reducing the effi-
ciency of peptide identification. To overcome this
limitation, isobaric peptide labeling methods, such as
iTRAQ [121], TMT [122] and DiLeu [123], have been
developed to generate isobaric MS1 peaks and enable
multiplexed tagging (e.g. 11-plex, 16-plex, 18-plex, and
27-plex TMT) [76, 124, 125]. After fragmentation of the
isobaric peaks, different reporter ions are released for
relative quantification in MS2/3 scans [126].
During MS data acquisition, the instrument is oper-

ated in the mode of data-dependent acquisition (DDA)
[104], or an alternative mode of data-independent acqui-
sition (DIA) [116]. In DDA, the spectrometer utilizes
MS1 survey scans to select the most abundant peptide
ions (e.g. top 10) in a small isolation window (e.g. 0.5-2
m/z), and then sequentially fragment them to generate
MS2 scans. Though effective, some weak peptide ions
are skipped in DDA, resulting in missing values. To

alleviate this issue of undersampling, DIA sets up con-
tinuous isolation windows (e.g. 10–50 m/z) across the
entire mass range and fragments all ions indiscrimin-
ately. The scanning of all DIA windows, however, in-
creases time dependency. Therefore DIA was inefficient
until rapidly scanning instruments became available
[116]. Regarding MS instruments, early analyses utilized
time-of-flight (TOF) mass spectrometers that were read-
ily coupled with MALDI [92]. Later, triple quadrupoles
(QqQ) and linear ion traps were popularized as low-
resolution MS due to their cost effectiveness, while ex-
pensive Fourier-transform instruments (FTICR) were
used for high-resolution detection [92]. Nowadays, with
ion separation capacity provided by ion mobility spec-
trometry (IMS), TOF instruments have been significantly
improved [127]. Moreover, the invention of compact
Orbitrap instruments has revolutionized MS-based pro-
teomics by offering a robust and high-resolution ap-
proach to proteome profiling [128].
Post-MS bioinformatics tools extract accurate infor-

mation from raw MS data to protein identification and
quantification. Large protein databases or MS spectral li-
braries may be searched with computational programs
to assign MS2 spectra to peptides. A large number of
search algorithms have been developed and reviewed
elsewhere [129, 130]. One caveat to large-scale protein
database search is the risk of false discovery, which has
been addressed by the introduction of the target-decoy
strategy to reduce the false discovery rate (FDR) of iden-
tified proteins (e.g. <1 %) [110, 131]. Following protein
identification, quantification is often performed to assess
protein abundances within samples, followed by differ-
ential expression (DE) and network analysis to derive
testable hypotheses.
Overall, robust bottom-up proteomic methods require

the seamless combination of pre-MS, MS and post-MS
settings. The number of identified proteins is an indis-
pensable metric for assessing proteomic techniques

Fig. 2 Protein samples are analyzed by pre-MS sample processing, MS data acquisition and post-MS bioinformatic data processing. Protein
quantification can be achieved by label-free methods, such as spectral counting (SC), extracted ion current (XIC), and data-independent
acquisition (DIA), or by isotope-labeling methods, such as SILAC and TMT. In addition, MS may also be operated to analyze targeted proteins/
peptides by multiple reaction monitoring (MRM) or parallel reaction monitoring (PRM)
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because crucial regulatory proteins are often present at
low abundance in cells, which cannot be detected by a
shallow proteomic analysis. To achieve ultra-deep
proteome coverage [119], a common proteomics plat-
form (e.g. TMT-LC/LC-MS/MS) utilizes multiplexed
TMT labeling, two-dimensional HPLC (e.g. basic pH
and acidic pH reverse phase liquid chromatography),
and DDA in high resolution MS (Fig. 3) [117, 118].
This platform recently generated numerous deep AD
proteomic datasets. Alternatively, LC-IMS-DIA-MS is a
promising label-free platform, which combines ion mo-
bility spectrometry, one-dimensional LC, and data-
independent acquisition in MS to analyze about 10,000
proteins from brain tissue [132]. In addition to MS,
proteins can be analyzed using specific affinity reagents
such as antibodies (e.g. protein chips, ELISA, and prox-
imity extension assay) [133–135] and aptamers (e.g.
SOMAscan) [136]. These non-MS techniques are ad-
vantageous in processing a large number of samples,
but current drawbacks of reagent availability and speci-
ficity prevent whole proteome coverage.

Towards Unbiased Analysis of the AD Proteome
Evolving proteomic technologies have explored clinical
AD specimens to elucidate the underlying biomolecular
mechanisms of the disease in different time periods
(Fig. 1). In the pre-genomic era, incomplete protein da-
tabases limited MS analysis to known AD proteins (e.g.

Aβ and tau). LC-ESI-MS and MALDI-TOF-MS investi-
gated the composition of amyloid plaques, identifying
different Aβ peptides in soluble and insoluble forms [96,
137]. MS also identified abnormally modified tau species,
including phosphorylation, acetylation, and deamidation
[97]. With the completion of the Human Genome Pro-
ject in 2003, the first comprehensive human protein
database became available, providing the foundation for
large-scale and unbiased proteomic analyses; however, it
took another decade for proteomics technology to de-
velop for matching the depth of the human proteome.
Given the early challenges to analyzing the whole

proteome, sub-proteome analysis appeared to be an ef-
fective strategy. In 2004, Liao et al. characterized the
amyloid plaque proteome from postmortem AD brain
tissues through laser capture microdissection (LCM), a
technique for dissecting and isolating a tissue region of
interest [98]. Amyloid plaques labeled with thioflavin-S
were captured, followed by protein extraction and MS
analysis [138], identifying a total of 488 proteins. Com-
parison between the plaques and non-plaque tissues sug-
gested 26 DE proteins enriched in the plaque area. This
pilot study demonstrated that a large number of proteins
may accumulate in amyloid plaques [139]. For simplicity,
we use the term “amyloidome” to represent all biomole-
cules in amyloid plaques. Using a similar approach,
Drummond et al. quantified over 900 proteins in the
amyloidome from AD subtypes, reporting protein
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(e.g. TMT 16-plex)

1st LC

MS1MS2

Quantification by TMT Reporter Ions

Protein Samples:
• Brain Tissue
• CSF
• Plasma
• Serum

Network/Pathway 
Analyses and 
Hypotheses 

2nd LC-MS/MS

Peptide Identification by MS2 Spectra 

Data 
Processing

Fig. 3 A deep proteomic workflow of TMT-LC/LC-MS/MS. The 16-plex TMT reagents are represented by different colors, which react with amine
groups at peptide N-termini and lysine residues. In addition to the amine-reactive group, the isobaric TMT reagents also contain a reporter ion
group and a balance group. The mass difference in the reporter group is offset by the balance group, enabling isobaric labeling and pooling. The
pooled peptides are fractionated by LC/LC, and identified as mixed, isobaric precursor ions. After fragmentation, the TMT tags are cleaved
between the reporter and balance groups, generating reporter ions for quantification
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difference of rapidly progressive AD and sporadic AD
[140]. In 2019, Xiong et al. re-analyzed the AD
amyloidome in greater depth with LCM and the current
TMT-LC/LC-MS/MS method, increasing the proteome
coverage to more than 4,000 proteins, including 40 DE
proteins highly enriched in the plaque region, including
APOE and complement proteins [80].
Biochemical differential extraction of AD specimens

offers an alternative means of enriching the aggregate
proteome due to its low solubility [141, 142]. In 2009,
Gozal et al. set out to analyze the detergent-insoluble
proteome in AD; sequential fractionation in conjunction
with gel electrophoresis and LC-MS/MS profiled 512
proteins, of which 11 proteins were increased in the AD
samples [143]. Significant progress was made in 2013
wherein Bai et al., reported the most comprehensive
analysis of the brain insoluble proteome, covering 4,216
proteins with 36 DE proteins in AD [79]. As expected,
the most enriched proteins were Aβ, tau, APOE and
complement components, together with proteins in-
volved with RNA splicing, phosphorylation regulation,
synaptic plasticity, and mitochondrial function. Surpris-
ingly, the entire U1 snRNP splicing complex (e.g. U1-
70 K, U1A, U1C, U1 snRNA and a U1-70 K cleaved
fragment) is present in the insoluble proteome and form
a new type of cytoplasmic tangle-like fibril in sporadic
and familial AD cases [79, 144–147]. Together with con-
comitant RNA splicing defects revealed by transcripto-
mics [79, 148, 149], these results suggest the U1 snRNP
pathology and its associated RNA splicing dysfunction in
AD. Further studies in cell culture, fly and mouse
models link splicing defects with the pathogenesis of
Alzheimer’s disease [150–152].
In AD, synaptic loss occurs early and is highly corre-

lated with cognitive impairment [153]; therefore, the
synapse subproteome has been frequently visited [154–
156]. The postsynaptic density (PSD) is an integral struc-
ture for synaptic function, organized by supramolecular
complexes consisting of neurotransmitter receptors,
scaffold proteins, and other regulatory constitutes [157].
Zhou et al. used ultracentrifugation and differential ex-
traction to isolate PSD from AD brain, and analyzed 494
PSD components by the label free method [154]. More
recently, two groups utilized the advanced TMT method
to quantitate ~ 5,000 proteins in synaptic subproteome
[155, 156]. In particular, Carlyle et al. examined 100
brains in different disease stages of AD patients, reveal-
ing that cognitive impairment is associated with signifi-
cant metabolic changes and the increased inflammatory
response [156].
Beyond subproteome studies, numerous studies

attempted to characterize the whole proteomic changes
in AD brain, using both 2D gels [158] or bottom-up MS
to procure < 1,000 and 1,408-6,533 proteins [78, 159–

162], respectively. For example, Johnson et al. profiled
the proteome in more than 2,000 brains, and network
analysis revealed a large number of AD-associated pro-
tein modules involved with synapse/neuron, mitochon-
drial function, sugar metabolism, extracellular matrix,
cytoskeleton, and RNA binding/splicing [78]. These
studies also identified protein modules enriched in neu-
rons, microglia, and astrocytes [78, 160, 161]. In 2015,
an advanced LC/LC-MS/MS approach enabled the iden-
tification of > 10,000 proteins in the AD brain [163].
Coupling this approach to a TMT labeling approach,
deep proteome profiling became feasible [164, 165]. In
2020, Bai et al., presented such a study to compare
14,513 proteins in five groups of postmortem brain tis-
sues: (i) controls with low plaques and tangles, (ii) con-
trols with high pathology but no cognitive impairment,
(iii) mild cognitive impairment (MCI), (iv) AD with high
pathology, and (v) progressive supranuclear palsy (PSP)
with only tau pathology [74]. This study identified 173
DE proteins, in which the vast majority were specific to
AD when compared to the PSP cases. The DE proteins
were clustered into three major co-expression patterns
as derived from the weighted gene correlation network
analysis (WGCNA) algorithm [166]: (i) an Aβ-correlated
pattern (continuous accumulation from the control,
MCI to AD), (ii) a tau-correlated pattern (steady from
the control to MCI, but increased in AD), and (iii) a re-
versely correlated pattern with tau (stable from the con-
trol to MCI, but decreased in AD). Combining
interactome and pathway analysis of the DE proteins re-
vealed 17 altered pathways, including Aβ, WNT, TGF-β/
BMP, G protein, integrin signaling, innate immunity,
adaptive immunity, complement, cytoskeleton and extra-
cellular matrix, iron homeostasis, membrane transport,
lipid metabolism, protein folding and degradation, syn-
aptic, neurotrophic and mitochondrial functions. The
deep AD proteomics result indicates a broad, dynamic
proteomic perturbation during AD progression [74].
To date, three independent groups used the TMT-LC/

LC-MS/MS platform to generate seven deep proteomic
datasets (each identifying > 8,000 proteins) from a total
of 192 AD and control cortical specimens (Fig. 4) [74–
77]. These datasets offer an excellent opportunity for a
meta-analysis to enhance the statistical power, compiled
into a list of 12,017 unique gene products (one protein
per gene, Supplementary Table S2). The log2(AD/con-
trol) ratio and associated one-tailed p-value were de-
rived, followed by p-value combination using Fisher’s
method and Benjamini-Hochberg FDR correction,
resulting in 2,698 DE proteins (FDR < 1 %). Based on cell
type specific gene profiles [167], the DE list contains 638
cell type specific genes/proteins, including 140 in astro-
cytes, 337 in neurons, 10 in oligodendrocytes, 118 in
microglia, and 33 in endothelia (Supplementary Table
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S3), supporting the contribution of diverse cell types to
AD pathogenesis.

Functional Insights from the AD Proteomic
Landscape
In addition to recapitulating the known accumulation of
Aβ, tau and APOE in AD brain, the proteomic landscape
reveals 1,484 upregulated proteins and 1,214 downregu-
lated proteins (Fig. 4, Supplementary Table S2) [74–77].
Interestingly, the DE list contains 35 reported AD genes
and risk loci, including APP, MAPT, CLU, APOE, ICA1,
PTK2B, CD2AP, SNX32, ADAM17, FERMT2,
CARHSP1, ANK3, ABI3, PLEKHA1, BCKDK, GRN,
COX7C, TMEM163, CNTNAP2, ADAMTS1, NDU-
FAF7, SEL1L, RTFDC1, AGRN, ICA1L, SPRED2, HLA-
DRB1, INPP5D, TPBG, PLCG2, IDUA, CTSH, PRKCH,
PFDN1, and SHARPIN (Supplementary Table S1, ranked
by protein false discovery rate). Along this line, a
proteome-wide association study (PWAS) was reported
to integrated GWAS data with brain proteomics results
to determine 11 causal AD genes [168].
Proteome-transcriptome comparison suggests both

RNA-dependent and RNA-independent expression
changes in AD [74, 75]. Strikingly, these RNA-
independent DE proteins are often highly correlated
with the Aβ level, and are enriched in amyloidome, such
as MDK, PTN, NTN1, SMOC1, SFRP1, SLIT2, HTRA1,
and FLT1 [74, 80, 169]. Their RNA independence was
validated through complementary proteomic and tran-
scriptomic analysis of 5xFAD mice, an AD mouse model
of amyloidosis. MDK, NTN1, and SFRP1 were also
shown to bind directly to Aβ peptide [74] [169]. Given
that amyloid plaques grow up to 100 μm in size, the
enormous three-dimensional complexity, diverse cellular
structures, and vasculature [170] of these plaques may
create a quasi-cellular “black hole”, trapping within itself
a broad cohort of associated proteins which profoundly

impacts protein turnover. Among these proteins in amy-
loidome, SFRP1 (a regulator of WNT signaling) was re-
ported to affect the formation of Aβ oligomers, as
SFRP1 inhibition reduces plaque formation and partially
rescues cognitive deficits in an AD mouse model (APP/
PS1 mice), supporting its role in AD pathogenesis [169].
AD development spans a long prodromal stage before

progressive neurodegeneration, implicating a resilient
mechanism to Aβ toxicity in human brain, followed by
exacerbated insults to outweigh the resilience and drive
irreversible degeneration [55], illustrated in an equilib-
rium model (Fig. 5). Prior to the onset of AD, some of
the identified DE proteins might play protective roles,
such as netrin-1 (NTN1), netrin-3 (NTN3), midkine
(MDK), pleiotrophin (PTN), hepatocyte growth factor
(HGF), and WNT5B, particularly in the human resilient
cases that display high Aβ pathology but without clinical
symptoms [74]. Literary evidence corroborates this
evaluation, such as in the case of intracerebroventricular
administration of netrin-1 which improved working
memory in AD mice [171]. The netrin receptor UNC5C
was identified as an AD risk gene [63], and NTN5 (an-
other netrin family member) was located in an AD risk
loci in a GWAS [68]. Midkine and pleiotrophin, in the
same family of neurite growth-promoting factor, were
shown to directly interact with Aβ with high affinity,
possibly interfering with Aβ oligomerization and dimin-
ishing its toxicity [172, 173]. Upregulation of HGF sig-
naling may enhance synaptogenesis, thus recompensing
synaptic loss in AD [174]. Furthermore, the WNT path-
way was proposed to promote the viability of microglia,
which was induced by the AD risk gene TREM2 [175].
The transition from MCI to AD may be induced by

the upregulation of detrimental events and the diminish-
ing of protective events, consubstantial with marked in-
crease of tau pathology. The DE list (Supplementary
Table S2) contains a large number of complement

Fig. 4 A meta-analysis integrating 7 deep AD datasets and identifying 12,017 proteins. In each dataset, the p value for control-AD comparison is
derived by one-tailed t-test. The p values are combined by the Fisher’s method, followed by multiple-hypothesis correction using the Benjamini-
Hochberg FDR procedure. A total of 2,698 DE proteins are accepted with the FDR cutoff of 1 %. Compared to 167 reported AD genes and risk
loci, 35 are overlapped with the protein DE list. Based on cell type specific genes, the DE list contains 638 genes/proteins specific to all five major
cell types in the brain
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proteins (C1QA, C1QB, C1QC, C1QL1, C1QTNF5,
C1R, C1S, C3, C4A, and C4B) [74, 75]. Complement
components are immensely elevated in the aggregated
subproteome of the AD brain [73]. The complement
system activates microglia to trim synapses in AD
[176].The complement genes CR1 and C7 were iden-
tified as AD risk genes in large-scale GWAS analyses
[64, 177]. Deleting C3 in the AD (APP/PS1) mice was
shown to rescue synapse loss and memory decline
[178]. Knocking out of C3aR (C3a receptor) in a
tauopathy model (PS19 mice) also reduced inflamma-
tion, synaptic deficits and tau pathology [179]. There-
fore, the complement system influences multiple
molecular and cellular events during the progression
of Alzheimer’s disease [180].
In contrast, many neurotrophic factors are decreased

during the transition from MCI to AD, such as VGF,
BDNF, NRN1, and CRH [74, 75]. Notably, the former
four neurotrophic factors are connected together sur-
rounding the BDNF hub in protein-protein interaction
network. BDNF has been long viewed as a component
related to cognitive deficit, aging and AD [181]. Multi-
scale causal network analysis of AD multi-omics datasets
using the RIMBANET software ranks VGF as a master
regulator [182]. The overexpression of VGF in the

5xFAD mice attenuates the pathology and improves
memory performance. NRN1 can enhance neurite out-
growth and synapse maturation, and administration of
recombinant NRN1 protein in a mouse model (Tg2576)
improves synaptic plasticity [183]. In addition, NPTX2
(a binding protein of AMPA type glutamate receptors) is
markedly decreased in AD. Its gene knockout in the AD
(APP/PS1) mice leads to reduced GluA4 expression and
increased neuron excitability [184]. Collectively, the de-
crease of these key proteins may be a pathophysiological
mechanism contributing to synaptic failure and cognitive
impairment in AD.
Although we use a simple equilibrium model to dis-

cuss the roles of identified DE proteins during AD pro-
gression (Fig. 5), it is highly possible that the function of
these AD-associated proteins is multifactorial during the
long-lasting course of disease development, and whether
they play a protective or detrimental role might be
dependent on the temporal, regional and cellular
contexts.

Post-translationally Modified Proteomes in AD
Protein functionality in vivo is tightly regulated by a
myriad of posttranslational modifications and dynamic
protein-protein interactions. In neurodegenerative

Fig. 5 The equilibrium model of deleterious and protective factors during AD disease progression. Among the biological processes and cellular
pathways activated at the asymptomatic stage of AD, some may exert protective roles. However, with exacerbation of the harmful insults during
disease progression, the protective effect is exhausted. The resulting imbalance leads to neuronal degeneration and the onset of clinical
symptoms. The pathway information is extracted from current AD proteomic studies [74, 75, 78, 161]
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diseases exhibiting tauopathy, structurally distinct con-
formers of tau fibrils are characterized to classify disease
subtypes [185]. Tau aggregation is associated with exten-
sive PTMs, including phosphorylation, ubiquitination,
acetylation, methylation, glycosylation, sumoylation, oxi-
dation and cleavage [186–188]. A plausible explanation
to these disease specific tau conformers could be hidden
in the realms of PTMs. Arakhamia et al. utilized MS and
cryo-electron microscopy (cryo-EM) to map PTMs on
the structures of tau filaments, and found that ubiquiti-
nation of tau may contribute to fibril diversity [189]. Re-
cently, tau was extracted from 32 AD patients and
characterized by MS and seeding activity for protein ag-
gregation. The seeding capacity was found to signifi-
cantly correlate with phosphorylation at T231, S235 and
S262 sites [190].
Tau acetylation is known to elevate during early and

moderate Braak stages of tauopathy and may slow down
tau degradation [191]. Acetylation of K280/K281 sites
was suggested to promote the aggregation of tau [192].
The status of tau acetylation is regulated by the p300
acetyltransferase and the SIRT1 deacetylase. Chemical
inhibition of the p300 activity reduced the acetylation
level of tau, and thus eliminated tau-related pathology,
suggesting a possible treatment strategy to alleviate the
tauopathy [191].
More recently, Wesseling et al. reported the most

comprehensive tau PTM analysis in AD brains by an
array of MS strategies. A total of 95 modification events
(55 in phosphorylation, 17 in ubiquitination, 19 of
acetylation and 4 in methylation) were identified on
multiple tau isoforms from 42 control and 49 AD cases.
Using tau internal standards, the stoichiometry of some
PTM sites was also measured. The PTM events may
occur in order, and contribute to tau aggregation and
seeding activity by altering surface charge. These profiles
of tau PTMs in AD patients reveal molecular heterogen-
eity and disease stages.
Globally, Bai et al. identified 46,612 phosphopeptides

(34,173 phosphosites in 7,083 proteins) in brain tissues
at different stages of AD subjects by the combination of
phosphopeptide enrichment and TMT-LC/LC-MS/MS
approach, revealing 873 DE phosphopeptides in 398 pro-
teins [74]. The study also identified in AD hyperpho-
sphorylated tau (56 phosphosites) and osteopontin
(SPP1), a glycoprotein in the immune response. Interest-
ingly, the IKAP algorithm [193] was used to derive the
activities of 186 kinases from the phosphoproteome,
suggesting 28 differential kinase activities, covering all
known 11 tau kinases [188]. Integration of kinase activ-
ities and levels collectively indicate the activation of
MAP kinase signaling in AD [74]. Using the similar
method, Ping et al. reported another independent quan-
titative dataset of AD phosphoproteome (33,652

phosphosites in 8,415 proteins) [194]. The phosphopro-
teome profiling provides another layer of proteomic in-
formation during AD development.
In addition, the global analysis of protein ubiquitina-

tion in AD was reported, covering 4,291 ubiquitinated
sites in 1,682 proteins, in which more than 800 sites
were altered in AD [195]. Specific polyubiquitination
chains (Lys11, Lys48 and Lys63) were also found to ac-
cumulate in AD brain tissues [196]. These data implicate
the deregulation of the ubiquitin system in AD. Protein
N-glycosylation is one of the most prevalent PTMs in
cells [197]. Zhang et al. profiled 2,294 N-glycosylation
sites in 1,132 proteins in human brains to show AD-
associated changes of 178 N-glycosylation sites, suggest-
ing the aberration of protein N-glycosylation in the dis-
ease [198].
In summary, current MS platforms and enrichment

strategies enable either focused or proteome-wide ana-
lysis of PTMs in AD specimens. Large datasets have
been emerging, especially in phosphoproteome. A pleth-
ora of PTM information is also available online (www.
phosphosite.org), although the data are not AD-specific.
Together, these comprehensive PTM datasets will be
valuable for investigation of biochemical signaling path-
ways during AD pathogenesis.

Proteomics-Based Biomarker Discovery in AD
Exciting progress has been made toward MS-based
proteomic profiling of cerebrospinal fluid (CSF) for bio-
marker discovery [74, 75, 83–85, 199]. In many prote-
omic experiments, highly abundant proteins tend to
mask proteins present in low amounts, so immunodeple-
tion of these abundant proteins is a frequently used pro-
cedure for improving the detection of proteins of low
abundance. Sathe et al. reported a pilot deep CSF study
from 5 control and 5 AD cases, in which CSF samples
were first immunodepleted to remove 14 most abundant
proteins, and then analyzed by the TMT-LC/LC-MS/MS
approach. The study quantified 2,327 proteins with 139
DE proteins, including MAPT, NPTX2, VGF, GFAP,
NCAM1, PKM and YWHAG [83]. Higginbotham et al.
also used immunodepletion to enhance the depth of
CSF proteome, profiled 2,875 proteins from 20 control
and 20 AD cases, revealing 528 DE proteins, including
MAPT, NEFL, GAP43, FABP3, CHI3L1, NRGN; VGF,
GDI1 and SMOC1 [75].
Wang et al. however performed extensive LC fraction-

ation to bypass immunodepletion, and profiled 5,941
CSF proteins from 5 control and 8 AD cases, signifi-
cantly increasing the coverage of CSF proteome [74, 85].
The study yielded 355 DE proteins, revealing increases
to SMOC1 and TGFB2, and decreases to a large group
of mitochondrial proteins. Alternatively, Bader et al. de-
veloped an advanced label-free platform to profile
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undepleted CSF samples from three independent cohorts
of similar size (totaling 109 control and 88 AD cases).
The study analyzed 1,445, 1,478 and 1,483 proteins in
the three cohorts, highlighting the three DE proteins of
tau, SOD1, and PARK7, which are also linked to neuro-
degeneration by genetic data [84]. In all above studies,
the conclusions were also supported, at least partially, by
validation experiments using antibody-based detection,
targeted MS approaches, or replicated proteomic
analysis.
The meta-analysis of these six deep CSF datasets

above (each > 1,000 proteins, summed 260 AD and
control subjects) [74, 75, 83–85] yielded a list of 5,939
proteins, which includes 311 upregulated and 165 down-
regulated proteins in AD (Fig. 6, Supplementary Table
S4, FDR < 1 %). To enhance the selection of specific CSF
biomarkers, integrating CSF and brain proteomes is a
common strategy [74, 75, 78, 85]. We then overlapped
these DE proteins in CSF with the brain proteome
(Supplementary Table S2), yielding a core table of 65 up-
regulated proteins (e.g. MAPT, SMOC1, HTRA1, PDLI
M5, PRDX6, RUVBL2, CALB2, ARFGAP3, SPP1 and
DPCD) and 44 downregulated proteins in AD (e.g.
NPTX2, VGF, PDHA1, NDUFV1, NDUFA2, NDUFA12,
NDUFA13, NDUFS3, ATP5B and ATP5J, Supplemen-
tary Table S5). The meta-analysis (Supplementary Table
S4 and S5) provides a resource of AD CSF proteome for
future validation.
Moreover, Wang et al. compared human CSF and

5xFAD mouse CSF datasets, pointing to 11 shared DE
proteins (e.g. SOD2, PRDX3, ALDH6A1, ETFB,
HADHA, and CYB5R3) that may be induced by amyl-
oidosis [85]. Higginbotham et al. summarized the CSF
DE proteins into synaptic, vascular, myelin, immuno-
logical, and metabolic panels, and applied the five bio-
marker panels to the classification of asymptomatic AD
subjects into two subgroups [75]. In agreement with the
heterogeneity of AD-related cases, three molecular sub-
types are implicated by transcriptomics [200] and CSF
proteomics [134].

In contrast to CSF analysis, deep MS-based profiling
of AD plasma/serum samples is sparse, because mo-
lecular changes in the brain may not be readily de-
tected in the blood due to the blood–brain barrier.
The unique blood composition also imposes an ana-
lytical challenge with an extremely large dynamic
range, from albumin (~ 50 mg/ml) to interleukin-6 (~
4.2 pg/ml). Dey et al. reported an ultra-deep analysis
of undepleted human sera from 5 control and 6 AD
cases by TMT and exhaustive LC/LC-MS/MS, analyz-
ing 4,826 proteins but still missing the layer of pro-
teins at the lowest abundance (e.g. Aβ peptide and
tau) [99]. Nevertheless, overlapping of serum, CSF
and cortex proteomes identified 37 DE proteins in-
cluding 22 mitochondrial proteins, suggesting a con-
sistent mitochondrial signature in AD [85].
Extracellular vesicles (EV) enable the transport of

brain proteins to the blood, which emerge as an alterna-
tive class of specimens by MS analysis. EVs are highly
heterogeneous, nano-sized lipid vesicles released to the
extracellular environment for cell communication [201],
secreted by almost any cell types including neurons, as-
trocytes, and microglia [202]. EVs carry and spread AD-
related proteins including APP, Aβ peptides, and tau
[203, 204]. Increased levels of Aβ42/Aβ40 ratio, APP, Aβ
monomer and oligomer forms, tau and tau phosphoryl-
ation were reported in EVs isolated from the plasma,
CSF, and brain cells of AD patients and mouse models
[202, 205, 206]. With accumulating evidence suggesting
the correlation of EV protein components with AD, we
envision more comprehensive analysis of EV proteomics
for AD biomarker discovery.
In addition to untargeted search of biomarker candi-

dates by MS, the targeted trials of known pathological
markers (e.g. Aβ and tau) in CSF and blood have been
ongoing and successful. For example, the CSF tests of
Aβ and phosphorylated tau have been accepted by the
National Institute on Aging and the International Work-
ing Group for New Research Criteria for the diagnosis of
AD and MCI [207, 208]. Recent CSF tests of pTau at

Fig. 6 A meta-analysis integrating 6 deep CSF datasets and identifying 5,939 proteins. Using the same method in Fig. 4, individual and
combined p values for control-AD comparison are computed, followed by the FDR analysis. With the FDR cutoff of 1 %, 476 DE proteins are
accepted, 109 are overlapped with the list of DE proteins in AD brain tissues
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T181, T217 or T231 residues showed high accuracy
[209]. These analyses have been further extended to
blood tests. The MS-based blood test of Aβ peptides (i.e.
PrecivityAD™) is commercially available. Targeted MS
methods were also developed to evaluate pTau levels at
T217 and T181 residues in CSF and blood [210, 211].
The pTau data were consistent with PET imaging ana-
lysis of amyloid and tau, as well as clinical stage of AD.
Although the pTau analysis is promising, its concentra-
tion in blood is extremely low (< 1 pg/ml) [211], requir-
ing antibody-affinity enrichment, or highly sensitive
antibody-based SIMOA kits [209]. Further independent
and large-scale trials are required to evaluate the sensi-
tivity and specificity of pTau biomarkers.

Conclusions and Perspectives of AD Proteomics-
based Systems Biology
In systems biology, biological and disease phenotypes
are viewed as emergent properties regulated by compo-
nents in both spatial and temporal dimensions, and their
interactions confer functional consequences in a hier-
archical, multi-scale system at structural, molecular,
organellar, cellular, tissue, organ, and organismal levels.
In this framework of systems biology, based on the
introduction of recent major AD proteomics studies, we
discuss the technical challenges and scientific questions
in the field remaining to be resolved.
The sample quality in AD proteomics is unavoidably

affected by many confounding factors, such as age, gen-
der, postmortem interval (PMI), ischemia, etc. [212,
213]. The confounding effect on modified proteomes
(e.g. phosphorylation and ubiquitination) is larger than
that on the whole proteome, because protein modifica-
tions are highly transient and dynamic. While age- and
gender-matched cases are selected for proteomic com-
parison, the effect of other confounding factors (e.g.
PMI and ischemia) may be addressed by control experi-
ments in animals [74, 214], and normalized by regres-
sion analyses [75]. Sample size is another critical
parameter in AD proteomics, affected by biological and
experimental variations [215]. Proteomic studies with a
limited sample size often lead to biased conclusions that
cannot be repeated in other studies. Reliable proteomic
results should be consistent in multiple patient cohorts
analyzed by different research groups.
In human brain, it is estimated that ~ 16,000 genes are

expressed [163] to produce millions of proteoforms,
largely attributed to RNA alternative splicing and PTMs
[216]. For example, a large number of Aβ and tau pro-
teoforms are present in AD brains due to the combin-
ation of protein modifications and proteolytic events.
Although the bottom-up proteomics detects a large por-
tion (more than 12,000 gene products, Supplementary
Table S2) of brain proteome, mapping all intact

proteoforms is not straightforward, as protease digestion
in the bottom-up approach causes the loss of proteo-
form data. One may utilize the top-down MS to
characterize proteins of interest, such as proteoforms of
Aβ species [217] and tau proteins [218]. Innovative
structural MS technologies have been developed to
analyze protein structures of purified proteins, protein
complexes, and even thousands of proteins [219–222],
and will be applied to dissect structural changes in AD
at a global scale. Eventually, the integration of bottom-
up, top-down, and structural MS approaches will pro-
vide a more comprehensive view of the proteotype (de-
fined as the state of a proteome linked to a specific
phenotype) in AD patients [58]. In addition, continu-
ously enhancing throughput, sensitivity, and affordability
in proteomics is necessary. This will improve the depth
and breadth of detected proteomes, and make it possible
to handle large sample sizes to overcome limitations as-
sociated with protein dynamic range and clinical sample
variations.
Cellular components in the brain are highly heteroge-

neous including different cell types in diverse cellular
states of homeostasis or transition states. However, such
cellular heterogeneity is masked by conventional
population-based (or bulk) analyses. Recent development
of single cell (SC) omics technologies (especially scRNA-
seq) has allowed researchers to sample gene expression
from the whole transcriptome at the single cell reso-
lution extensively in AD animals and human brain tis-
sues [223–228]. The resulting unbiased and holistic view
of both molecular (e.g., gene expression) and cellular
(i.e., single cell) dimensions enables identification of new
cell (sub) populations, and those that associate with
pathogenesis will be highlighted and further explored.
With rapid development of single cell proteomics [229–
231], single cell type proteomics [232, 233], and single-
molecule protein sequencing technologies [234], the ap-
plication to the AD field is expected in the near future.
It is critical to emphasize that there is a gap between

generating proteomics data and discovering disease
drivers, because proteome profiling only reveals disease-
correlated components, but correlation does not imply
causation. Significant investments are required to estab-
lish a cause-effect relationship in disease models and hu-
man patients. With recent identification of a large
number of DE proteins in AD, the next step is to iden-
tify and validate the underlying mechanisms contributing
to the molecular changes. Master regulators (e.g., tran-
scription factors, kinases or other signaling proteins) that
drive such changes are yet to be identified, partially be-
cause their expression is spatially and temporally re-
stricted with their low abundances [235], and their
functions are likely to be regulated by PTMs and/or
protein-protein interactions which are largely missing.
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Hence it may be difficult to define some of these master
regulators directly by gene/protein expression profiles.
Alternatively, the driver activity can be inferred by sum-
marizing the expression alteration of downstream target
genes via systems biology approaches [236]. This
network-activity based approach [237, 238], and other
multi-omics network analyses [182, 239] will unveil dis-
ease drivers for AD pathogenesis. The novel disease
drivers will be studied by interactome profiling and gen-
etic approaches in cellular (e.g. induced pluripotent stem
cells) [240] and animal models [241].
In summary, current deep proteomics studies have

already profiled the brain and biofluids at an unprece-
dented scale, raising many novel hypotheses for subse-
quent validation. It is notable that AD is an irreversible
neurodegeneration and a nearly end-stage disease, in
which many cellular pathways and biological processes
are perturbed. With further development in the MS-
based or non-MS proteomics approaches, it is not sur-
prising to see even more molecular alterations and char-
acteristic proteins discovered. In parallel, it is anticipated
that novel AD models are to be developed following the
hypotheses from these molecular insights here we have
discussed, providing potential therapeutic strategies and
biomarkers for AD and subtypes of AD.
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