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Abstract 

Background Alzheimer’s disease (AD) is neuropathologically characterized by amyloid‑beta (Aβ) plaques and 
neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor‑tau, and 
APOE. We hypothesize that genetic variants influence the levels and solubility of these AD‑related proteins in the 
brain; identifying these may provide key insights into disease pathogenesis.

Methods Genome‑wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consor‑
tium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD‑related proteins from three 
fractions, buffer‑soluble (TBS), detergent‑soluble (Triton‑X = TX), and insoluble (Formic acid = FA), were available for 
these same individuals. Variants were tested for association with each quantitative biochemical measure using linear 
regression, and GSA‑SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes 
were further assessed for association with other relevant variables.

Results We identified genome‑wide significant associations at seven novel loci and the APOE locus. Genes and vari‑
ants at these loci also associate with multiple AD‑related measures, regulate gene expression, have cell‑type specific 
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enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant 
enrichment of shared and distinct biological pathways.

Conclusions Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly 
suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical 
states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for patho‑
physiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.

Keywords Alzheimer’s, Genetics, APOE, Amyloid, Tau, Association, Brain, GWAS, Neuroscience, Diseases, Biochemistry

Background
Alzheimer’s disease (AD) is a progressive neurodegen-
erative disorder, neuropathologically characterized by 
the accumulation of amyloid beta (Aβ) plaques and neu-
rofibrillary tangles (NFT) in the brain [1, 2]. While AD 
neuropathology broadly follows characteristic patterns, 
heterogeneity in the composition, location and burden of 
the two primary lesions has been reported across post-
mortem datasets [3–8]. The main component of insolu-
ble amyloid plaques is Aβ42, while Aβ40 is often found 
deposited in the brain cerebrovasculature called cerebral 
amyloid angiopathy (CAA) [8]. Aβ is generated by the 
normal cleavage of the amyloid-beta precursor protein 
(APP), which then can oligomerize and form extracel-
lular deposits [9, 10]. Some mutations in the APP gene 
cause a familial early-onset form of AD through modifi-
cation of APP cleavage resulting in an increase in Aβ42 
production [11]. Increased tau levels are also observed in 
AD, along with abnormal hyperphosphorylation leading 
to aggregation into insoluble NFT within the cell body 
[2, 12]. Under normal conditions in the brain the solu-
ble tau protein is found relatively un-phosphorylated and 
bound to microtubules for stabilization [13–15]. Previous 
genetic studies of late-onset AD (LOAD) have found var-
iants associated with the risk of developing AD; the most 
significant of which is the well-established APOE-ε4 allele 
[16–18]. APOE encodes apolipoprotein E (APOE) which 
functions mainly in lipid transport, but is also known to 
play a role in Aβ metabolism and its insoluble forms are 
often found co-deposited with Aβ plaques [19]. Beyond 
insoluble deposits of amyloid and tau species, soluble 
and membrane-associated biochemical states of these 
proteins have also been associated with AD-related phe-
notypes. In the temporal cortex, soluble levels of Aβ40 
and Aβ42 are significantly elevated in AD compared to 
controls and Aβ40 levels positively correlate with dis-
ease duration [20, 21]. Membrane-associated forms of 
Aβ show a significant positive correlation with Aβ posi-
tron emission tomography (PET) imaging in AD, while 
cortical Aβ42 levels have been reported to correlate with 
worse clinical severity and increased rate of cognitive 
decline [20, 21]. Moreover, it has been shown that when 
tau interacts with the plasma membrane, the propensity 

for fibrillization increases, and within the context of AD, 
variability in soluble tau has been shown to occur in the 
presence of Aβ pathology but before significant NFT 
pathology [22–31]. Apart from APOE-ε4, genetic risk 
factors associated with different brain biochemical states 
of distinct proteins core to AD pathology have yet to be 
identified and characterized [32].

We hypothesize that important insights into the patho-
genesis of AD may be gained by identifying genetic 
variants associated with variability in brain levels of 
AD-related protein endophenotypes including Aβ40, 
Aβ42, tau, phosphorylated tau (p-Tau) and APOE. Fur-
thermore, different biochemical states (soluble, mem-
brane, and insoluble) of AD-related proteins may have 
distinct genetic variants that influence their levels within 
the brain. Such findings may provide key insights into 
production or clearance pathways for these disease-
associated proteins, leading to novel therapeutic targets 
or biomarkers. To investigate this, we utilized genetic 
and biochemical measures collected from the temporal 
cortex of 441 post-mortem AD cases. We performed a 
genome-wide association study (GWAS) for levels of all 
five proteins, collected from three biochemical states in 
the brain (Fig. 1). Our findings reveal novel genetic loci 
and highlight the unique genetic architecture for spe-
cific biochemical states of AD-related protein endophe-
notypes. This study establishes deep brain biochemical 
endophenotype GWAS as a novel approach to dissect 
the biochemical heterogeneity of AD proteins which is 
essential to fine-tune therapeutic efforts targeting these 
proteins.

Methods
Brain samples
Post-mortem temporal cortex samples included in this 
study were a part of the Mayo Clinic AD-CAA (MC-
CAA) study on the AD-knowledge portal (https:// adkno 
wledg eport al. synap se. org, see data sharing). All sam-
ples had a confirmed AD neuropathological diagnosis, a 
Braak stage ≥ four, Thal phase ≥ three, and were from 
non-Hispanic White decedents of Northern European 
descent. In total, 441 samples had both genome-wide 
genotyping data and biochemical measures available for 

https://adknowledgeportal.synapse.org
https://adknowledgeportal.synapse.org
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analyses. This study was approved by the appropriate 
Mayo Clinic Institutional Review Board.

Neuropathology
Braak stage, Thal phase, and CAA scores were measured 
by the Mayo Clinic Brain Bank using previously estab-
lished protocols [32–36]. Intermediate Braak stages were 
grouped with the next lowest stage as follows, stage 3.5 is 
3, 4.5 is 4, and 5.5 is 5 as detailed previously [32, 37].

Biochemical measures
Biochemical measures from 441 of the 469 superior 
temporal cortex brain samples previously described 
[32] were utilized for this study based on the availabil-
ity of genome-wide genotypes. Biochemical measures 
include five AD-related proteins (APOE, Aβ40, Aβ42, 
tau, and phospho-tau (Thr231)) from three tissue frac-
tions. Briefly, supernatant fractions were collected after 
three sequential buffer treatments of tissue homogenate 
and resulting pellets: first with tris-buffered saline buffer 
(TBS), second with detergent (TBS/1% Triton X) buffer 

(TX), and finally with formic acid buffer (FA), represent-
ing soluble, lipid-membrane and insoluble biochemical 
fractions. AD-related biochemical measures were quan-
tified in each fraction via ELISA and normalized against 
total protein quantities. All biochemical measures were 
transformed by either the natural log or square root to 
achieve an approximately normal distribution including 
the Aβ40/42 ratio (Fig. S1). In the subset of 441 samples 
analyzed, we evaluated the association of the AD-related 
proteins within and among these tissue fractions through 
pairwise correlation and found similar results as reported 
previously [32] (Data not shown).

Genotyping
DNA was isolated from brain tissue using the 
AutoGen245T instrument according to manufacturer’s 
protocols, incubated with two μl (4 mg.ml) RNAseA solu-
tion (Qiagen, Germany) and stored at -80 °C until use. 
Genome-wide genotypes from 477 samples were previ-
ously collected [37] using the Infinium Omni2.5 Exome8 
v1.3 genotyping array and results were exported using 

Fig. 1 Graphical Abstract. Graphical depiction of this study: AD = Alzheimer’s Disease, N = Number, Aβ = amyloid beta, p‑Tau = phosphorylated 
tau, TBS = Tris Buffered Saline, TX = Triton‑X, FA = Formic Acid, GWS = Genome‑wide significant, LD = Linkage Disequilibrium, eQTL = expression 
quantitative trait locus, sQTL = splicing quantitative trait locus, DE = Differential expression. Created with BioRender.com
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the Illumina GenomeStudio software v1.9.4. Data was 
formatted into PLINK (v1.9) files [38, 39] (lgen, fam, 
and map) and quality control of the samples and geno-
types was performed, as described in detail elsewhere 
[37]. Four hundred sixty samples passed quality con-
trol (QC), of which 441 also had biochemical measures 
[32]. Variants passing quality control (N  = 1,383,987) 
were imputed to the haplotype reference consortium 
(HRC) panel [40, 41] and those with an imputation qual-
ity R2 ≥ 0.7 and MAF ≥ 2% were kept, yielding a total of 
6,726,078 variants for analysis. Genotype dosages were 
converted to hard calls when needed with uncertainty 
> 0.1 set to missing. Minor allele frequencies and Hardy-
Weinberg p-values were calculated for all reported vari-
ants using dosages in PLINK [38, 39].

Genotypes for key variants, or their proxies (r2  = 1, 
D′ = 1 in 1000 Genomes EUR), were validated by Taqman 
genotyping or Sanger sequencing following the manufac-
turer’s protocols. These assays were also used to collect 
genotypes from an additional 1564 Mayo Clinic Brain 
Bank (MCBB) samples with available DNA to enable 
assessment with AD-related neuropathology measures 
of Braak stage, Thal phase, neuropathological diagno-
sis of AD, and age at death (combined N = 2005, Table 
S7). These combined 2005 AD samples are collectively 
referred to as the Mayo Clinic Brain Bank Expansion 
Cohort and are non-overlapping with the AMP-AD 
Mayo Clinic cohort described below. Taqman genotyping 
assays were performed using 10 ng of dried-down DNA 
and the QuantStudio 7 Flex system (Thermo Fisher Sci-
entific, USA) for 7 variants (Table S14). Genotypes for 
APOE-rs429358 were previously collected using Taqman 
assays and queried from a database. One variant, STRN4-
rs34805055, failed genotyping assay design and had no 
viable proxies, so Sanger sequencing was performed 
to validate all minor allele carrier samples. Sequencing 
was done on the ABI 3730 Genetic Analyzer instrument 
(Thermo Fisher Scientific, USA) following PCR amplifi-
cation with the following primer pair: forward (5′- GGA 
AAG CAG CTC TGA TAC ) and reverse (5′- CGC ATT CTG 
AGT CTCTG) (Integrated DNA Technologies, USA).

AMP‑AD datasets
The Mayo RNAseq study [42], The Mount Sinai Brain 
Bank (MSBB) study [43] and The Religious Orders Study 
and Memory and Aging Project (ROSMAP) Study [44], 
were obtained from the AD-knowledge portal (https:// 
adkno wledg eport al. synap se. org). Available brain tissue 
RNAseq data, whole-genome genotypes, and neuro-
pathological variables collected from these three studies 
were downloaded and used for fine-mapping of GWS loci 
and association analyses. The inclusion of these large, 
well-characterized, and harmonized datasets from the 

AMP-AD consortia with complementary multi-omics 
datasets allow us to investigate and characterize GWS 
variants and loci across multiple regions of the brain for 
associations with AD-related phenotypes and brain gene 
expression levels in these cohorts. The RNA-seq data 
consists of seven datasets, two from Mayo Clinic (TCX 
and CER), four from MSBB (BM10, BM22, BM36, and 
BM44), and one from ROS-MAP (DLPFC) and previ-
ously underwent consensus reprocessing (AMP-AD, 
RNAseq Harmonization Study) [45]. Additional QC and 
diagnosis harmonization of these datasets based on neu-
ropathological measures retrieved from individual meta-
data files are described in detail elsewhere [37].

In all cohorts, diagnosis was determined primarily by 
neuropathology made by experienced neuropathologists. 
The following criteria were used for diagnoses: AMP-AD 
Mayo dataset AD patients had a Braak stage ≥4 while 
nonADs had a Braak stage ≤3. AMP-AD MSBB dataset 
AD patients had a Braak stage ≥4 and CERAD score ≥ 2 
while nonADs had Braak stage ≤3 and CERAD score ≤ 1. 
AMP-AD ROS-MAP dataset AD patients had a Braak 
stage ≥4 and CERAD score ≤ 2 while nonADs had Braak 
stage ≤3 and CERAD score ≥ 3. Of note, MSBB and 
ROS-MAP used different CERAD definitions. In ROS-
MAP, CERAD score (1-4) was based on semiquantitative 
estimates of neuritic plaque density in one or more neo-
cortical regions following recommendations by the Con-
sortium to Establish a Registry for Alzheimer’s Disease 
(CERAD) protocol [46]. In MSBB, a CERAD 1 = Normal, 
2 = Definite AD, 3 = probable AD, and 4 = possible AD. 
In ROSMAP, 1 = Definite AD, 2 = probable AD, 3 = Pos-
sible AD, and 4 = No AD.

Whole genome sequencing (WGS) data from each 
AMP-AD cohort was processed separately using an auto-
mated pipeline at the New York Genome Center. 150 bp 
paired-end reads were aligned to GRCh37 human ref-
erence genome using Burrows-Wheeler Aligner [47] 
(BWA-MEM v0.7.08). After marking duplicates with 
Picard tools [48] (v1.83) and local read alignment around 
indels, base quality score recalibration (BQSR) was per-
formed using Genome Analysis Toolkit [49] (GATK v 
3.4.0). Variant calling and joint genotyping were per-
formed using GATK’s HaplotypeCaller (GATK v3.4.0) 
and GenotypeGVCFs (GATK v.3.5), respectively, to gen-
erate a multisample VCF file for each dataset. Variant 
quality was assessed using GATK’s variant quality score 
recalibration (VQSR) tool. After obtaining multi-sample 
VQSR-ed VCFs for each individual study from the AD 
knowledge portal (see data sharing), genotypes were 
imported into PLINK [38, 39] (v1.9) for additional sam-
ple and variant QC using an in-house next-generation 
sequencing QC pipeline. Bi-allelic autosomal variants 
that pass VQSR FILTER, having a genotyping rate > =98% 

https://adknowledgeportal.synapse.org
https://adknowledgeportal.synapse.org
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and a minor allele frequency > = 2%, and a Bonferroni 
adjusted HWE p-value in controls > 0.05 were retained 
for downstream analysis. Variants within high variability 
regions of the genome that can lead to spurious associa-
tions were excluded. Samples with a call rate > =98%, sex 
concordant with clinical information as evaluated using 
the inbreeding coefficient of the X-chromosome (males 
> = 0.7, females<=0.3) and a heterozygosity estimate 
within 3 standard deviations (SD) of mean were retained. 
Relatedness among samples within each cohort was eval-
uated using KING [50] robust and only one sample from 
each pair or family of samples related to the third degree 
(kinship estimate > = 0.0442) was retained. Population 
substructure was evaluated using Eigenstrat [51, 52] and 
outliers beyond 6 SD of the top 10 principal components 
were removed over five iterations while refitting PCs 
after each iteration. After performing sample and vari-
ant QC within each cohort, data from all three datasets 
was merged and relatedness and population substructure 
were re-evaluated to exclude related samples and popula-
tion outliers across all three datasets. In summary, unre-
lated samples of relatively homogeneous non-Hispanic 
White ancestry that met the aforementioned sample 
and variant QC metrics were retained for downstream 
analyses.

Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset
The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, 
MD [53]. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging (MRI), posi-
tron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can 
be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease 
[54]. Inclusion and exclusion criteria, clinical and neu-
roimaging protocols, and other information about ADNI 
can be found at www. adni- info. org. Data used in the 
preparation of this article were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database 
(adni. loni. usc. edu). Demographic information, apoli-
poprotein E (APOE) and genome, Pre-processed  [18F] 
Florbetapir PET scans, plasma total Aβ42, and plasma 
tau phosphorylated at the threonine 181 (p-tau) data, 
and clinical information are available and were down-
loaded from the ADNI data repository (www. loni. usc. 
edu/ ADNI/).  [18F] Florbetapir PET scans were intensity-
normalized using a whole cerebellum reference region to 
create SUVR images [55]. CSF biomarkers (Amyloid-β 
1-42 peptide (Aβ1-42), total tau (t-tau), and p-tau) were 
generated by the validated and highly automated Roche 
Elecsys® electrochemiluminescence immunoassays and 

the same reagent lot for each of these three biomarkers 
[56]. The ADNI participants were genotyped using sev-
eral Illumina genotyping platforms. After quality control 
procedures for participants and SNPs, un-genotyped 
SNPs for non-Hispanic participants of European ancestry 
were imputed separately in each platform using Markov 
Chain Haplotyping with the Haplotype Reference Con-
sortium data as a reference panel [57].

Statistical analysis
Power calculations were performed in R (v4.0.2) with 
the genpwr package. For a sample size of 441, and an 
alpha = 5E-08, we have 80% power to detect effect sizes 
of 0.42 and 0.96 when the minor allele frequency (MAF) 
is 0.5 and 0.05, respectively. Principal component analy-
sis with automatic outlier exclusion was performed using 
Eigenstrat [51, 52], no population outliers were identi-
fied. PLINK was utilized to perform PCA without out-
lier exclusion to examine samples in this cohort relative 
to 1000G superpopulations. PCA plots were generated 
using the ploty_ly() package in R (v3.6) (Fig. S5).

PLINK (v2.00a2LM) was used to perform genome-wide 
association tests for variant dosage associations with 
each biochemical measure adjusting for age, sex and the 
first three population principal components (PCs). When 
specified, the APOE-ε2 and -ε4 alleles as well as APOE 
diplotypes 23, 24, 34, and 44 (33 was set as the reference) 
were included as covariates. There were no APOE 22 
samples. Genomic inflation values (λ) were calculated in 
R (v3.6.2) for each biochemical measure with and with-
out adjustment of APOE-ε2 and -ε4 alleles (Fig. S6); there 
was no evidence for genomic inflation (0.97 < λ < 1.02). 
QQ plots were generated in R (v3.6) with the ggplot pack-
age (Fig. S6). A genome-wide significance (GWS) thresh-
old was calculated based on the number of independent 
variants in our dataset which also accounts for the inclu-
sion of low frequency variants [58]. Quality control of 
the imputed variants to the HRC reference panel yielded 
a total of 6,726,078 variants. To calculate the number of 
independent variants, we used the ‘--indep-pairwise’ 
flag in PLINK with the window size set to 50 kb, step 
size set to 5, and R2 threshold set to 0.8. After this prun-
ing, we had 1,679,420 independent variants which we 
used to calculate our study GWS threshold of 2.98 ×  10-8 
(0.05/1,679,420). To determine if GWS associations were 
independent from the effect of the APOE-ε4 allele, con-
ditional analyses were run in PLINK 2.0 implementing 
the ’--condition’ command in a linear regression model 
conditioning on the APOE-ε4 tagging variant rs429358 
and adjusting for age, sex, and PCs1-3. LD analysis was 
performed using PLINK (± 1 Mb, D′ ≥ 0.8 and r2 ≥ 0.2). 
The estimated proportion of biochemical measure vari-
ance explained by the GWS index SNPs was based on the 

http://www.adni-info.org
http://adni.loni.usc.edu
http://www.loni.usc.edu/ADNI/
http://www.loni.usc.edu/ADNI/
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R2 calculated through linear regression models regressing 
appropriate index SNPs on each biochemical measure.

Variants were tested for association with AD neuropa-
thology and other related measures in the AMP-AD and 
expanded MCBB datasets using multi-variable regression 
analysis. Braak stage and Thal phase were assessed with 
ordinal regression in R (v4.0.2), diagnosis with logistic 
regression in PLINK, and age at death with linear regres-
sion in PLINK (v2.00a2LM). Samples with age at death 
greater than 90 years in the MCBB were redacted to 90 
to parallel protocols of the AMP-AD datasets. All models 
included sex as a covariate, and age at death, APOE-ε2, 
and APOE-ε4 when appropriate or specified. Meta- anal-
ysis was performed in R (v4.0.2) with the meta function 
for both fixed and random effects models.

The AMP-AD datasets were used to assess of each 
locus with brain gene expression. Differential expression 
analysis between diagnosis (AD case or control) and nor-
malized gene expression levels was performed using lin-
ear regression implemented in R (v3.5.2) adjusting for age 
at death, sex, RNA integrity number (RIN), and sequenc-
ing batch. eQTL analysis was performed by testing vari-
ant association with CQN gene expression levels in a 
linear mixed model using the lme4 package in R (v3.5.2) 
adjusting for diagnosis, sex, age at death, RIN, tissue 
source, and the first three PCs, with the flow cell added as 
a random effects variable.

Variants were investigated in the ADNI dataset by 
performing a linear regression association analysis of 
variants with AD endophenotypes using additive genetic 
models adjusted for age and sex with or without APOEɛ4 
carrier status inclusion as an additional covariate.

Colocalization analyses for GWS loci with evidence 
of a significant QTL was performed. For loci with eQTL 
evidence from AMP-AD datasets, we used the coloc() 
R package [59, 60] with summary GWAS and QTL sta-
tistics as inputs +/− 500 Kb from the index variant and 
linkage disequilibrium estimates from the 1000 Genomes 
EUR dataset. Single causal variant colocalization was 
investigated with the coloc.abf function while multiple 
causal variants were investigated with the runsusie and 
susie.coloc functions [61] in coloc which uses the Sum 
of Single Effects (SuSiE) regression framework [60]. The 
suggested decision rule of hypothesis 4 (H4) having a 
posterior probability (PP) value > 0.9 was used to indi-
cate colocalization. For loci with QTL evidence from 
GTEx, the ezQTL webserver tool made available through 
the NIH Division of Cancer Epidemiology and Genetics 
at the National Cancer Institute (analy sisto ols. cancer. 
gov/ ezqtl/#/ home) [62] was utilized to investigate single 
causal variant colocalization with HyPrColoc [63] and 
multiple causal variant colocalization with eCAVIAR 
[64]. GWAS summary statistics were lifted from hg19 

to hg38 using the UCSC chain file (hg19ToHg38, down-
loaded from genome. ucsc. edu/ on 11/04/2022) and the 
R package rtracklayer::liftOver(). GTEx v8 summary data 
and 1000 Genomes EUR LD data were precompiled by 
ezQTL.

Pathway analysis
Gene set enrichment analysis was performed for each 
GWAS result with GSA-SNP2 software [65] against the 
MSigDb c5.all.v5.2 database [66, 67]. Options selected 
include European race, GRCh37(hg19) padding build, 
and pathway size window of 10-200. GSA-SNP2 results 
were matched with Gene Ontology (GO) [68, 69] term 
IDs using an in-house script. Significant GO terms and 
p-values were input into REViGO [70] to summarize sig-
nificantly enriched pathways. REViGO settings were as 
follows: medium (0.7) allowed similarity, Homo sapiens 
(Gene Ontology Jan 2017) database, and SimRel semantic 
similarity measure. Summary bar charts were created in 
R (v3.6.2) with ggplot by taking reduced pathway groups 
from the REViGO outputs and the most significant 
p-value of that group for each biochemical measure.

Variant annotations
We queried existing data and results from multiple 
resources to further annotate key variants and investigate 
the implicated loci. These additional datasets represent 
either the largest, most comprehensive, or most applica-
ble dataset available to characterize the loci of interest for 
their associations with AD-related phenotypes, regula-
tory potential or other human diseases and phenotypes. 
Associations of GWS variant dosage with sqrt (CAA) 
were performed previously [37] and results were que-
ried for key variants identified in this study. Cell-specific 
differential gene expression analysis was queried from 
Mathys et  al. 2019 [71] between AD pathology and no 
pathology samples in six cell types (excitatory neurons, 
inhibitory neurons, microglia, oligodendrocytes, astro-
cytes, and oligodendrocyte precursor cells), downloaded 
from the supplemental material (Table  S2) on June 10, 
2019, and limited to genes ±1 Mb from the GWS vari-
ants in the Ensembl hg19 build (release 103) [72]. Only 
genes that passed study-level significance (FDR corrected 
p-value ≤0.01 and a fold change ≥0.25) in at least one 
cell type were included in our evaluation.

Summary statistics for the LOAD GWAS (Kunkle et al. 
2019 [16]- NG00075, Lambert et al. 2013 [17]- NG00036) 
and CSF GWAS (Cruchaga et  al. 2013 [73]- NG00049) 
were downloaded from NIAGADs. International 
Genomics of Alzheimer’s Project (IGAP) is a large three-
stage study based upon genome-wide association studies 
(GWAS) on individuals of European ancestry. In stage 1, 
IGAP used genotyped and imputed data on 11,480,632 

http://analysistools.cancer.gov/ezqtl/#/home
http://analysistools.cancer.gov/ezqtl/#/home
http://genome.ucsc.edu/
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single nucleotide polymorphisms (SNPs) to meta-analyze 
GWAS datasets consisting of 21,982 Alzheimer’s dis-
ease cases and 41,944 cognitively normal controls from 
four consortia: The Alzheimer Disease Genetics Consor-
tium (ADGC); The European Alzheimer’s disease Initia-
tive (EADI); The Cohorts for Heart and Aging Research 
in Genomic Epidemiology Consortium (CHARGE); and 
The Genetic and Environmental Risk in AD Consor-
tium Genetic and Environmental Risk in AD/Defining 
Genetic, Polygenic and Environmental Risk for Alzhei-
mer’s Disease Consortium (GERAD/PERADES). In stage 
2, 11,632 SNPs were genotyped and tested for associa-
tion in an independent set of 8362 Alzheimer’s disease 
cases and 10,483 controls. Meta-analysis of variants 
selected for analysis in stage 3A (n = 11,666) or stage 3B 
(n = 30,511) samples brought the final sample to 35,274 
clinical and autopsy-documented Alzheimer’s disease 
cases and 59,163 controls.

The 1000 genomes phase_3 (GBR) dataset was queried 
for variants in LD (± 50 kb, r2 ≥ 0.8, D′ ≥ 0.8) through 
Ensembl and NCBI LDlink (https:// ldlink. nci. nih. gov/) 
[74]. The Genotype-Tissue Expression (GTEx) Project v8 
(https:// gtexp ortal. org/) [75, 76] was queried for signifi-
cant eQTLs and sQTLs between August and December 
2020.

A graphical description of the datasets integrated in 
each analysis is outlined in Fig. S7.

Results
Genome‑wide association study identifies seven novel loci 
associated with AD brain biochemical endophenotypes
We utilized a cohort of 441 autopsy-confirmed AD cases 
from the Mayo Clinic Brain Bank with genome-wide 
genotypes and temporal cortex (TCX) biochemical meas-
ures of AD-related protein endophenotypes including 
APOE, Aβ40, Aβ42, total tau, and p-Tau from soluble 
(TBS), membrane (TX), and insoluble (FA) tissue frac-
tions. Demographics including neuropathology scores 
are outlined in Table S1. Quantitative brain biochemi-
cal measures were previously collected and transformed 
to approximate a normal distribution (Table S2, Fig. S1) 
[32]. To identify genetic associations with brain levels of 
AD-related proteins, genome-wide association studies 
were performed for each normalized biochemical frac-
tion as well as the normalized ratio of Aβ40/42, adjusting 
for age, sex, and the first three population principal com-
ponents (PCs) in the primary model. When specified, we 
also adjusted for APOE genotypes as follows: conditional 
analysis on the APOE-ε4 tagging variant (rs429358) 
imputed dosages, including as covariates APOE diplo-
types, the APOE-ε2 tagging variant (rs7412) dose, and/or 
APOE-ε4 dose, as well as stratified by APOE diplotype. 
Altogether, we identified genome-wide significant (GWS, 

P  < 2.98 ×  10− 8) SNP-endophenotype associations at 8 
unique loci: 6 unique loci for Aβ40, 3 for APOE, and 1 for 
the ratio of Aβ40/Aβ42 (Table 1, Figs.  2, 3 and 4, Table 
S3).

Seven of these loci involve novel intronic variants 
that have not been previously implicated in genetic 
association studies of AD or related endophenotypes: 
rs116580059 near SCIN for APOE in TX fraction 
(rs116580059-APOETX (SCIN)), rs11845003-APOETX 
(NPAS3), rs116726862-Aβ40TX (SLC9A9), rs148028977-
Aβ40TX (RFX7), rs34805055-Aβ40TX (STRN4), 
rs77785770-Aβ40TX (KCNN2) and rs9890231-Aβ40TBS 
(ITGB4). Assessment of the index SNPs at each locus 
across all biochemical measures determined that each 
is nominally (P  < 0.05) associated with additional bio-
chemical measures (Fig.  3). The estimated proportion 
of biochemical measure variance explained by the index 
SNPs based on the R2 of linear regression models ranged 
from 7 to 27%, with APOE-ε4 (rs429358) alone explaining 
between 6.6 to 14% (Table S4).

More broadly, we detected 1813 variants with a 
P < 1 ×  10− 5 ranging from 26 variants for total  tauTBS to 
341 for  APOETX (Table S3). While not reaching GWS, the 
most significant SNPs for the remaining traits include, 
Aβ42: TBS-rs147370282, TX-rs10219590, FA-rs461939; 
Aβ40/42: TBS-rs9890231, TX-rs483082; total tau: TBS-
rs34678552, TX-rs76878089, FA-rs1634993; and p-Tau: 
TBS-rs2294557, TX-rs10987782, and FA-rs11651012 
(Fig. S2, Table S3). Interestingly we found associations 
that approach GWS for total  tauTBS (P = 8.03E-07) and 
total  tauTX (P  = 9.48E-06) with rs117691004 which is 
located in the PRKN gene known to play a role in Parkin-
son’s Disease [77] (Table S3).

Multiple variants at the APOE locus associate with brain 
biochemical measures of AD‑related proteins
Presence of the APOE-ε4 allele has previously been reported 
to associate with biochemical measure levels in this dataset 
[32], however, using the GWAS data we can explore the 
effects of APOEε4 dose and additional genetic variation 
at this locus. We found a total of 30 unique GWS variants 
at or proximal to the APOE gene with at least one associ-
ated with six of the biochemical measures (Table S3). The 
known exonic AD risk APOE-ε4 tagging variant (rs429358) 
was the most significant SNP for four of the traits: Aβ40TX, 
Aβ40FA, Aβ40/42FA,  APOEFA. The proximal NECTIN2 
intronic variant (rs283815) was the top SNP for  APOETBS 
(Figs. 4 and 5), and an intergenic SNP between APOE and 
APOC1 (rs483082) was the most significant for Aβ40/42TX. 
These two SNPs are in linkage disequilibrium (LD) with 
APOE-ε4 in our dataset (rs283815: r2  = 0.73, D′ = 0.87; 
rs483082: r2  = 0.92, D′ = 0.99) which is likewise associ-
ated with the same biochemical traits (Fig. 3, Table S3). In 

https://ldlink.nci.nih.gov/?tab=home
https://gtexportal.org/


Page 8 of 23Oatman et al. Molecular Neurodegeneration            (2023) 18:2 

Ta
bl

e 
1 

D
es

cr
ip

tio
n 

of
 g

en
om

e 
w

id
e 

si
gn

ifi
ca

nt
 S

N
Ps

D
es

cr
ip

tio
ns

 o
f t

op
 g

en
om

e-
w

id
e 

si
gn

ifi
ca

nt
 (G

W
S)

 S
N

Ps
 a

ss
oc

ia
te

d 
w

ith
 e

ac
h 

bi
oc

he
m

ic
al

 m
ea

su
re

 in
 N

 =
 4

41
 A

D
 c

as
es

. S
ev

en
 a

re
 n

ov
el

 a
nd

 th
re

e 
ar

e 
kn

ow
n.

 M
od

el
s 

in
cl

ud
e 

an
 a

dd
iti

ve
 m

od
el

 a
dj

us
te

d 
fo

r a
ge

, s
ex

, a
nd

 
PC

1-
3,

 a
nd

 a
 c

on
di

tio
na

l m
od

el
 c

on
di

tio
ni

ng
 o

n 
A

PO
E-

ε4
 (r

s4
29

35
8)

 a
dj

us
te

d 
fo

r a
ge

, s
ex

, a
nd

 P
C1

-3

Tr
an

sf
 T

ra
ns

fo
rm

at
io

n,
 N

 N
um

be
r, 

M
AF

 M
in

or
 A

lle
le

 F
re

qu
en

cy
, H

W
E-

P 
H

ar
dy

 W
ei

nb
er

g 
Eq

ui
lib

riu
m

 P
-v

al
ue

, C
I C

on
fid

en
ce

 In
te

rv
al

, P
 P

-v
al

ue

Pr
ot

ei
n

Bu
ffe

r
Tr

an
sf

SN
P

Ch
r

Lo
cu

s
Po

si
tio

n 
A

nn
ot

at
io

n
M

in
or

 
A

lle
le

N
M

A
F

M
A

F 
Bi

n
H

W
E‑

P
A

dd
iti

ve
 M

od
el

Co
nd

iti
on

al
 A
PO

E-
ε4

 m
od

el
CA

D
D

 
Sc

or
e

Re
gu

lo
m

e 
Ra

nk
Be

ta
(C

I 9
5%

)
P

Be
ta

(C
I 9

5%
)

P

N
ov

el
A

β4
0

TB
S

ln
rs

98
90

23
1

17
IT
G
B4

In
tr

on
 

IT
G
B4

G
43

9
0.

04
LF

1.
00

−
1.

88
(−

2.
52

–‑
1.

23
)

2.
09

E‑
08

−
1.

84
(−

2.
47

–‑
1.

21
)

2.
06

E‑
08

3.
37

1
5

A
β4

0
TX

ln
rs

77
78

57
70

5
KC

N
N
2

In
tr

on
 

KC
N
N
2

G
44

1
0.

05
LF

0.
60

0.
79

(0
.5

3–
1.

05
)

3.
12

E‑
09

0.
72

(0
.4

7–
0.

97
)

2.
15

E‑
08

0.
97

7
5

A
β4

0
TX

ln
rs

14
80

28
97

7
15

RF
X7

In
tr

on
 R
FX

7
T

44
1

0.
02

LF
1.

00
1.

24
(0

.8
3–

1.
64

)
4.

47
E‑

09
1.

1
(0

.7
1–

1.
49

)
6.

98
E‑

08
12

.6
4

5

A
β4

0
TX

ln
rs

11
67

26
86

2
3

SL
C9

A9
In

tr
on

 
SL
C9

A9
T

44
1

0.
03

LF
1.

00
0.

95
(0

.6
3–

1.
27

)
1.

51
E‑

08
0.

57
(0

.3
8–

0.
77

)
2.

78
E‑

08
3.

50
7

3a

A
β4

0
TX

ln
rs

34
80

50
55

19
ST
RN

4
In

tr
on

 
ST
RN

4
T

44
1

0.
08

M
F

1.
00

0.
61

(0
.4

1–
0.

82
)

1.
15

E‑
08

0.
85

(0
.5

4–
1.

16
)

1.
53

E‑
07

6.
37

9
4

A
PO

E
TX

sq
rt

rs
11

65
80

05
9

7
SC

IN
In

tr
on

 S
CI
N

C
43

9
0.

03
LF

1.
00

3.
34

(2
.2

0–
4.

48
)

1.
82

E‑
08

3.
38

(2
.2

4–
4.

51
)

1.
08

E‑
08

1.
25

4
3a

A
PO

E
TX

sq
rt

rs
11

84
50

03
14

N
PA

S3
In

tr
on

 
N
PA

S3
T

43
9

0.
02

LF
1.

00
4.

05
(2

.6
6–

5.
44

)
2.

05
E‑

08
4.

04
(2

.6
5–

5.
42

)
1.

99
E‑

08
7.

41
8

4

Kn
ow

n
A

β4
0

TX
ln

rs
42

93
58

19
AP

O
E

Ex
on

 A
PO

E
C

44
1

0.
4

H
F

0.
07

0.
37

(0
.2

5–
0.

48
)

6.
88

E‑
10

–
–

–
0.

00
7

4

A
β4

0
FA

ln
rs

42
93

58
19

AP
O
E

Ex
on

 A
PO

E
C

44
1

0.
4

H
F

0.
07

0.
91

(0
.6

8–
1.

15
)

6.
75

E‑
14

–
–

–
0.

00
7

4

A
β4

0/
42

TX
ln

rs
48

30
82

19
AP

O
E/

AP
O
C1

In
te

rg
en

ic
T

44
1

0.
42

H
F

0.
49

0.
33

(0
.2

2–
0.

44
)

2.
11

E‑
08

0.
29

(−
0.

08
–

0.
66

)
0.

12
10

.2
5

4

A
β4

0/
42

FA
ln

rs
42

93
58

19
AP

O
E

Ex
on

 A
PO

E
C

44
1

0.
4

H
F

0.
07

0.
94

(0
.7

2–
1.

16
)

1.
48

E‑
15

–
–

–
0.

00
7

4

A
PO

E
FA

ln
rs

42
93

58
19

AP
O
E

Ex
on

 A
PO

E
C

44
1

0.
4

H
F

0.
07

0.
49

(0
.3

8–
0.

60
)

4.
53

E‑
16

–
–

–
0.

00
7

4

A
PO

E
TB

S
sq

rt
rs

28
38

15
19

AP
O
E/

N
EC

TI
N
2

In
tr

on
 

N
EC

TI
N
2

G
44

1
0.

42
H

F
0.

02
−

2.
41

(−
3.

10
–‑

1.
72

)
2.

60
E‑

11
−

1.
51

(−
2.

74
–‑

0.
27

)
1.

75
E‑

02
1.

82
7

7



Page 9 of 23Oatman et al. Molecular Neurodegeneration            (2023) 18:2  

an APOE-ε4 conditional analysis, only rs283815 remains 
nominally significant (Table  1). We further examined the 
rs283815-APOETBS association after adjusting for APOE-ε2 
and APOE-ε4 dose, for APOE diplotypes, and in the APOE-
33 only sample subset (N = 141, β = − 3.79, P =  2.16E-03) 
finding that this association remained nominally significant 
(Table S5). Taken together, this suggests that the effects of 
rs483082 and APOE-ε4 on Aβ40/42TX levels likely represent 
the same signal. However, because the rs283815-APOETBS 
association is present even in the APOE-33 only sample 
subset, as well as after adjusting for combinations of APOE 
diplotypes, our results suggest that more than one genetic 
variant at the APOE locus beyond that of the APOE-ε4 sig-
nal likely contribute to soluble APOE levels in the TCX. 
The rs283815 variant has previously been implicated in 
AD risk in males [78] and imaging of cerebral amyloid 
deposition [79], although it did not survive adjustment for 

APOE-ε4 in the latter. These variants at the APOE region 
(rs429358, rs283815, and rs483082) represent the most sig-
nificant associations across all fractions of Aβ40, Aβ40/42, 
and APOE, but no fractions of Aβ42, total tau, or p-Tau 
(P > 0.031) (Table S6); indicating that they likely impact dis-
ease risk through effects on APOE and Aβ40, but not tau. 
Furthermore, the direction of association for APOE frac-
tions indicates a shift in biochemical state with minor allele 
carriers having lower soluble APOE  (APOETBS) and higher 
insoluble APOE  (APOEFA) (Fig. 3), suggesting a role in pro-
moting aggregation of APOE rather than overall levels.

AD brain biochemical endophenotype GWS variants 
also associate with disease risk, age at death, 
and AD‑related neuropathology and biomarkers
To further characterize the GWS variants with respect 
to other AD-related phenotypes, we evaluated their 

Fig. 2 Circular Manhattan Plots of brain AD‑related protein GWAS. Circular Manhattan plots for each protein measured in three biochemical 
fractions. Plots for proteins with SNPs that reach genome‑wide significance (GWS) are shown. Red dotted line marks GWS threshold of 
p‑value = 2.98E‑08, solid blue line marks p‑value = 1E‑05. Top SNPs at GWS loci have dots increased in size and labeled with the closest gene name. 
SNPs with a p‑value <1E‑05 are colored red. Radial axes measure ‑log10(P‑value). Inner most blue circle is the soluble TBS fraction, middle green 
circle is the membrane TX fraction and outer most purple circle is the insoluble FA fraction
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association with AD risk, AD-related neuropathological 
variables (Braak stage, Thal phase, cerebral amyloid angi-
opathy = CAA), AD-related biomarkers (amyloid  [18F] 
Florbetapir PET scans, plasma total Aβ42, and phospho-
rylated tau (pTau), CSF Aβ42, total tau (t-tau) and pTau) 
and age at death in additional samples.

We expanded the cohort size and validated the 
GWAS genotypes by genotyping these variants or 
their proxies in the GWAS study samples (N  = 441) 
and additional Mayo Clinic Brain Bank (MCBB) par-
ticipants (N  = 1564) using TaqMan assays or Sanger 
sequencing (Table S7). We refer to these 2005 partici-
pants as the Mayo Clinic Expanded Cohort. A high 
level of concordance, > 98%, was observed between the 
array-based genotyped or imputed alleles and those 
collected by TaqMan and sequencing (Table S8). Asso-
ciation results using the TaqMan genotypes in place 
of the array-based genotypes showed only minor vari-
ations in effect size and significance, demonstrating 
consistency of the results (Table S5). Genotypes for 
the index GWS variants were also extracted from three 
independent whole genome sequence (WGS) datasets 

available from the Accelerating Medicines Partner-
ship AD (AMP-AD) study through the AD knowledge 
portal (www. synap se. org) which includes the Mayo 
Clinic RNAseq (Mayo, n  = 344) [42], Mount Sinai 
Brain Bank (MSBB, n = 267) [43], and Rush Religious 
Orders Study and Memory and Aging Project (ROS-
MAP, n = 1091) [44] studies (Table S7). We note that 
the AMP-AD Mayo and Mayo Clinic Expanded Cohort 
are non-overlapping. Meta-analyses for available geno-
types and common AD-related phenotypes were con-
ducted across these 4 independent datasets for each 
SNP using fixed and random effects models (Fig.  3, 
Fig. S3, Table S9).

In addition, we investigated the association of GWS 
variants with other AD-related endophenotypes that 
were not available in the aforementioned datasets. We 
queried a previous GWAS of CAA [37] to determine the 
association of the GWS variants in the current study with 
this vascular AD pathology. We also evaluated the asso-
ciation of the GWS variants with AD-related biomarkers 
including amyloid PET measures, CSF and plasma Aβ 
and tau in the ADNI dataset.

Fig. 3 Association of Genome‑wide significant SNPs across all Biochemical Measures, Meta‑Analysis, and ADNI dataset with AD‑related Phenotypes. 
Associations of novel (top) and known (bottom) GWS Index SNPs across all 18 biochemical measures in the Mayo Clinic Brain Bank cohort (n = 441) 
and results from meta‑analysis with AD‑related phenotypes in up to 4 cohorts (n = 3707). Meta‑analysis was conducted using data from four 
independent autopsy datasets, namely the AMP‑AD Mayo Clinic (n = 344), Mount Sinai Brain Bank (MSBB, n = 267), Rush (ROSMAP, n = 1091) 
and the Mayo expanded brain bank dataset (n = 2005). Mayo AMP‑AD and expanded brain bank datasets were non‑overlapping, and latter also 
included the 441 AD donors from the brain biochemical measures GWAS. Meta‑analysis results are fixed effects models adjusted for sex and age at 
death when appropriate. Rs483082 was not significant after conditioning on rs429358 (APOE‑ε4) and so was not carried forward for meta‑analysis. 
Proxy SNPs genotypes were used for rs148028977 and rs116580059 in the Mayo expanded dataset. Note, Thal measures were only available 
from the expanded Mayo dataset and the AMP‑AD Mayo dataset. Rs34805055 was not genotyped in the expanded Mayo dataset, therefore 
meta‑analysis excluded this cohort for this SNP. ADNI associations include amyloid PET (N = 784), CSF amyloid (N = 1154), CSF p‑Tau (N = 1151), 
plasma amyloid (N = 262), and plasma p‑Tau (N = 787) adjusted for age and sex. Dot color indicates direction of beta value (blue = positive, 
red = negative), size of dot indicates absolute beta value. Associations with a p‑value ≤2.98E‑8 indicated by (***),1E‑05 ≤ p‑value < 2.98E‑8 indicated 
by (**), and 0.05 ≤ p‑value <1E‑05 indicated by (*)

http://www.synapse.org
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As expected, the APOE-ε4 variant (rs429358) and 
the proximal NECTIN2 variant (rs283815) signifi-
cantly associated with AD risk, Thal phase, Braak stage, 
amyloid PET, CSF amyloid and p-Tau, plasma p-Tau 
and as reported previously for APOE-ε4, also CAA 
[32]. Rs283815 was also associated with age at death 
and plasma amyloid, although the rs283815 associa-
tions were no longer significant after adjustment for 

APOE-ε2 or APOE-ε4 (Fig.  3, Tables S9 and S10). Of 
the novel variants, we found rs116726862 (SLC9A9 
intron, increased Aβ40TX) was associated with higher 
Thal phase (P = 7.50E-03), increased CAA (P = 4.70E-
02), and a trend for increased AD risk (P = 0.07), higher 
Braak stage (P =  0.07), and higher plasma p-Tau lev-
els (P  = 0.08). The SCIN intronic SNP rs116580059 
(increased APOE TX) was associated with lower Thal 

Fig. 4 Locus Zoom Plots. Locus Zoom plots (locuszoom.org) of GWS SNPs showing associations +/− 500 kb from variant of interest (labeled). Right 
Y‑axis shows the p‑value, left Y‑axis shows rate of recombination, and X‑ axis shows position on chromosome and nearby gene positions. Each plot 
point represents a variant in the dataset color coded by (r2) value
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phase (P = 0.015) and a trend (P = 0.06) for lower Braak 
stage. We found rs11845003 (NPAS3 intron, increased 
 APOETX) associated with increased CSF amyloid levels 

(P  = 0.02), decreased plasma p-Tau levels (P  = 0.04), 
and trends for decreased amyloid PET (P  = 0.09). 
Rs9890231 (intron ITGB4, decreased Aβ40TBS) 

Fig. 5 Box Plots of Genome‑wide Significant SNP Genotypes. Box plots of hard‑call genotypes for each genome‑wide significant SNP from 
each biochemical measure GWAS. Each dot represents an individual sample, N = Number. Variant rs number and gene closest to GWS SNP 
listed at the top, beta and p‑value listed at the bottom, biochemical measures on the y‑axis. Genotype: Light blue‑ Homozygous major, Medium 
blue‑ Heterozygotes, Dark blue‑ Homozygous minors
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associated with decreased CSF p-Tau (P = 0.01) and a 
trend for lower amyloid PET (P  = 0.07). The intronic 
STRN4 variant rs34805055 (increased Aβ40TX) associ-
ated with increased CSF p-Tau (P = 0.03) and plasma 
tau levels (P = 0.04) (Fig. 3, Tables S9 and S10).

In all cases, we find these additional AD-related phe-
notype associations are entirely consistent with what 
we would expect based on prior knowledge. Specifically, 
higher amyloid PET, CSF pTau, plasma pTau, lower CSF 
and plasma Aβ have congruent associations with the 
AD risk variant at the APOE locus and other variants 
that behave like APOE with respect to brain biochem-
istry associations (i.e. SLC9A9, STRN4 variants). In 
contrast, variants that have a pattern of brain biochem-
istry associations opposite to that of APOE also have 
opposite direction of associations for the other AD-
phenotypes as well (i.e NPAS3 and ITGB4 variants). 
Although not all associations would survive Bonferroni 
correction, these biologically congruent associations 
facilitate identification of potential molecular mecha-
nisms connecting genetic variants, biochemical meas-
ures, and other AD phenotypes. Taken together, these 
results validate the array-based genotype calls by an 
independent assay. Importantly, they also implicate at 
least two of the novel variants more broadly in AD risk 
and neuropathology (variants near SLC9A9 and SCIN), 
and four with additional AD-related endophenotypes 
(near SLC9A9, NPAS3, ITGB4, and STRN4) in a direc-
tion that is consistent with the brain biochemical find-
ings and known associations with the well-established 
APOE risk variant.

Brain transcriptome analyses implicate expression 
dysregulation at some of the novel AD brain biochemical 
endophenotype loci
We hypothesized that some of the variants might func-
tion through their influence on the expression or splicing 
of nearby genes. We performed cis-expression quanti-
tative trait locus (cis-eQTL) analysis (SNP ± 1 Mb) in 
three AMP-AD transcriptome datasets collected from 
seven brain regions of AD cases and controls avail-
able through the AD knowledge portal and also que-
ried independent results from the GTEx portal (www. 
gtexp ortal. org/ home/, queried 08/2020) [75, 76]. We 
found that rs34805055-Aβ40TX (intron STRN4) was 
significantly associated with the downregulation of 
PRKD2 gene expression in the Mayo Clinic TCX data-
set (β = − 0.29, q-value  = 2.6E-03) and RN7SL364P in 
the ROS-MAP dorsolateral prefrontal cortex (DLPFC) 
dataset (β = − 0.38, q-value  = 3.0E-02). The PRKD2 
gene is located approximately 3 kb downstream of 
rs34805055 while RN7SL364P is a pseudogene located 
within an intron of PRKD2. In the GTEx dataset, PRKD2 

expression and splicing QTLs were found for this vari-
ant in healthy brain cortex tissue (Normalized Effect 
Size (NES) = − 0.46, P = 4.1E-05), and other tissue types. 
The rs283815-APOETBS (NECTIN2 intron) variant sig-
nificantly associated with TOMM40 splicing in healthy 
cerebellum tissue (NES = − 0.94, P  = 3.80E-16), whilst 
rs9890231-Aβ40TBS (intron ITGB4) associated with 
ITGB4 splicing in several tissues including healthy tibial 
nerve tissue (NES = − 1, P = 6.50-09). Altogether, these 
results indicate that the rs34805055-Aβ40TX variant may 
influence gene regulation and splicing of the PRKD2 gene 
rather than the index gene STRN4, while rs9890231-
Aβ40TBS and rs283815-APOETBS may influence splicing 
of ITGB4 and TOMM40,  respectively. The remaining 
novel index variants do not appear to influence gene reg-
ulation in the CNS at the bulk tissue level.

We next investigated the colocalization of the signifi-
cant GWAS and QTL signals at each locus by testing for 
colocalization under single and multiple causal variant 
assumptions. We found that none of the traits (GWAS 
and QTL pairs) showed evidence of colocalization under 
the assumption that a locus has a single causal vari-
ant with both traits. Relaxing this assumption to allow 
for multiple causal variants at a locus to associate with 
a trait, we found the rs34805055-Aβ40TX (STRN4) trait 
and Mayo TCX PRKD2 eQTL showed evidence of colo-
calization (H4 posterior probability = 0.999). It should 
be noted, however, there was only one credible set iden-
tified in this analysis with rs34805055 and rs62134781 
being the top signals in the GWAS and eQTL datasets, 
respectively. A single credible set suggests a single casual 
variant at the locus for both traits, however, our original 
analysis under this assumption did not show evidence 
of colocalization and these two variants are not in LD 
(R2 = 0.1347, D′ = 1). No other traits showed colocaliza-
tion with multiple causal variants.

We also examined each implicated locus (variant 
±1 Mb, hg19) to determine if there were differentially 
expressed (DE) genes between AD cases and con-
trols. We used the AMP-AD RNAseq datasets [42–44] 
to assess 267 expressed genes. We found that while 
all loci harbored DE genes in at least 1 brain region, 3 
index genes and 1 gene implicated through the above 
QTL analysis were consistently DE in 2 or more brain 
regions. KCNN2 was downregulated in AD for 3 data-
sets while RFX7, SLC9A9, and PRKD2 were upregulated 
in AD for 2 (Table S11). Bulk tissue profiling captures 
changes across multiple cell types and may miss cell-
specific molecular changes so we also queried results 
from a published single-cell RNAseq (scRNA-seq) data-
set [71]. We found 67 genes at the implicated loci that 
were DE in at least one cell type between samples with 
AD pathology and those with no AD pathology, 90% 

http://www.gtexportal.org/home/
http://www.gtexportal.org/home/
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of which were dysregulated in neurons (Table S12). Of 
the index genes, ITGB4 was upregulated in astrocytes, 
NECTIN2 was downregulated in neurons, while APOE 
was upregulated in neurons and microglia, and down-
regulated in astrocytes in AD. Interestingly, although 
we focus on the AD pathology vs no pathology analy-
ses, Mathys et  al. [71] also reported DE genes between 
early and late AD pathology in which we see upregula-
tion of PRKD2 in neurons (fold change = 0.51) in late 
AD. Collectively these results implicate dysregulation 
of PRKD2 and ITGB4 at the novel loci identified by this 
study and APOE, NECTIN2 and TOMM40 at the estab-
lished Chr19q13 AD locus (Fig. S4). Larger datasets with 
genetic and single-cell data will be needed to further 
explore whether these variants influence cell-specific 
gene expression changes.

Genes at the AD brain biochemical endophenotype GWAS 
loci are implicated in neuronal health and disease
We hypothesized that variants either in LD with the 
GWS index variants or others at the AD brain biochemi-
cal endophenotype GWAS loci may also associate with 
function or disease(s) of the central nervous system 
(CNS).

First, we identified variants in LD with the GWS index 
variants by querying the AMP-AD WGS Mayo TCX and 
CER datasets as well as the 1000 Genomes GBR dataset. 
We then searched these LD variants in the GTEx data-
base as well as the GWAS catalog for significant asso-
ciations beyond those already reported for the index 
variants (queried 09/28/2022). Eight of the nine GWS 
index variants had variants in LD with them. All but one 
of these were in noncoding regions, the exception being 
rs157581 in LD with rs283815, a synonymous missense 
variant in TOMM40 (Table S9). At this same locus, we 
found multiple additional variants in LD with rs283815 
at NECTIN2-APOETBS locus with previous associations 
to AD, CAA, cognition, and AD biomarkers includ-
ing CSF levels of Aβ42 and tau [78–84]. Interestingly, 
we also identified a complete proxy of the index vari-
ant rs116726862 at SLC9A9-Aβ40TX locus, rs115134872 
(D′ = 1, r2  = 1), previously associated with survival in 
amyotrophic lateral sclerosis [85].

Next, we investigated all variants present in the 
index genes through a gene search in the GWAS cata-
log (https:// www. ebi. ac. uk/ gwas/, queried 06/07/2021) 
[86]. Five of the seven novel index genes have variants 
that associate (P  < 1E-05) with AD-related phenotypes 
(Table S9). These include the SLC9A9 locus associated 
with brain Aβ40TX (i.e., SLC9A9-Aβ40TX locus) in this 
study and working memory [87], response to cholinest-
erase inhibitors in AD [88] and epistatic interactions with 
tau measurements [89]. SLC9A9-Aβ40TX locus was also 

implicated in the neuropsychiatric disorders of autism 
[90, 91] and attention deficit hyperactivity disorder [92].

Another brain biochemical endophenotype GWAS 
locus with AD and other neuropsychiatric disease-related 
associations was NPAS3-APOETX which is also associ-
ated with neuritic and diffuse plaque measurements [93], 
CSF levels of soluble TREM2 [94], epistatic interactions 
with tau measurements [89], schizophrenia [95, 96] and 
bipolar [95, 97, 98] disorder. The KCNN2-Aβ40TX locus 
was also associated with age of onset for AD [99], epi-
static interactions with amyloid [89], schizophrenia [95, 
96], bipolar [95, 97, 98] disorder and hippocampal sclero-
sis [100]. Additionally, RFX7-Aβ40TX and SCIN-APOETX 
loci have associations with regional brain volume [101] 
and inflammation markers [102], respectively.

This convergent evidence supports important roles 
for most of the AD brain biochemical endophenotype 
GWAS genes and loci in neuronal health and disease.

Gene set enrichment analysis identifies shared and distinct 
pathways among GWAS genes for different AD brain 
biochemical measures
To identify pathways that are enriched for each AD brain 
biochemical fraction GWAS we performed gene set 
enrichment analysis using GSA-SNP2 [65] with Gene 
Ontology (GO) terms [65]. We identified both shared and 
distinct significantly enriched pathway terms for each 
biochemical measure GWAS (Fig.  6). Shared biological 
pathway terms have known roles in AD such as synapse 
organization, cell-to-cell adhesion, and immune-related 
processes. Distinct enrichment for different biochemi-
cal fractions (TBS, TX, FA) was related to known func-
tions for each protein, indicating that discrete molecular 
mechanisms likely influence specific biochemical states 
of each AD-related protein. For example, APOE is known 
to function in lipid metabolism and we found enrichment 
for lipoprotein clearance pathways. Notably, for soluble 
Aβ42TBS and p-TauTBS we found enrichment in peptide 
cross-linking pathways indicating a genetic influence on 
systems that may play a role in the transition from soluble 
to aggregated forms of these proteins. Further, we see the 
enrichment of synapse organization and central nervous 
system neuron differentiation pathways for p-TauFA. This 
is consistent with the well-established knowledge that 
NFTs comprising hyper-phosphorylated tau correlate 
with neuronal loss and severity in AD [103]. Interestingly, 
we found distinct enrichment in endocytosis regulation 
pathways for Aβ40/42FA and sensory perception of taste 
pathways for Aβ42TX and Aβ42FA. These results implicate 
variants proximal to genes involved in both known and 
novel pathways that may play a role in AD pathogenesis 
through impacts on specific or multiple AD-related pro-
teins and their distinct biochemical states in the brain.

https://www.ebi.ac.uk/gwas/
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Some AD risk GWAS variants also influence distinct 
biochemical measures
Finally, we wanted to determine if there are shared 
genetic risk factors for AD risk and specific brain AD-
related biochemical measures. We queried large-scale 
AD risk GWAS [16, 17] for the novel variants identified 
in this study but did not find a significant association 
(P > 0.05) for those outside the APOE locus. This would 
suggest that while the GWS variants may influence these 
brain biochemical endophenotypes, they do not have 
a statistically significant impact on the more heterog-
enous phenotype of AD risk. We also investigated 28 

GWS late-onset AD (LOAD) established risk variants 
for association with each biochemical measure [16]. Of 
the 26 variants present in our dataset, only associations 
with the APOEε4 tagging variant survived Bonferroni 
correction for 26 tests (P  < 1.93E-03), however; 9 oth-
ers were nominally significant (P < 0.05) for at least one 
biochemical fraction with six having directions of effect 
consistent with AD risk, based on prior knowledge, and 
the direction of effect for the APOEε4 tagging variant 
(Table S13). These include APOE-ε4-rs429358, discussed 
previously, and the risk allele for rs9331896 (C) at the 
CLU locus which associates with higher brain  APOETBS, 

Fig. 6 Gene set enrichment analysis in all biochemical measures. Gene set enrichment was performed via GSA‑SNP2 with the MiSigDB (c5.all.
v5.2). Significantly enriched pathways (q‑value < 0.05) were matched with Gene Ontology (GO) IDs and input in REViGO for reduction of redundant 
pathways and summarization. Significant pathway groups from REViGO and the highest p‑value of that group are plotted in bar plots for each 
protein. X‑axis = −log10(P‑value), Orange = soluble (TBS) fraction, Blue = membrane (TX) fraction, Green = insoluble (FA) fraction
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 APOETX and total  tauTBS, and lower p-TauTX. The risk 
allele for rs73223431 (T) at the PTK2B locus associates 
with increased p-TauTX and p-TauFA, but not APOE or 
Aβ measures. The protective allele of rs1080826 (A) at 
the EPHA1 locus associated with lower levels of Aβ42TX, 
Aβ42FA and total  tauFA (Table S13). While associations 
outside the APOE locus would not survive Bonferroni 
correction, these results using unique biochemical meas-
ures from brain tissue can still indicate the underlying 
pathological mechanisms by which these established AD-
risk variants might influence disease.

Discussion
Genetic, model system, and neuropathology stud-
ies have clearly established Aβ, tau and APOE as dis-
ease hallmarks, biomarkers and therapeutic targets in 
AD and other neurodegenerative diseases [104–106]. 
Even though there are several strategies targeting 
these molecules for therapeutic benefit in AD, critical 
knowledge gaps hinder progress. All three molecules 
undergo complex processing and exist in heterogene-
ous biochemical states in the human brain. Discovering 
genetic and other factors contributing to this molecu-
lar complexity and biochemical heterogeneity can yield 
novel therapeutic avenues. Further, the relationship of 
the various biochemical states of these molecules and 
their genetic determinants with other AD-related out-
comes can help clarify the beneficial vs. detrimental 
mechanism of action for targeted therapies. Finally, a 
comprehensive genetic map of the various biochemical 
states of key AD proteins can help pave the way for per-
sonalized medicine targeting specific perturbed path-
ways in an individualized fashion.

In this study we sought to identify the genetic deter-
minants contributing to variability in the brain bio-
chemical states of key AD-related proteins. We report 
the identification of eight independent GWS loci that 
associate with brain levels of five hallmark AD-related 
proteins isolated from three tissue fractions. Seven loci 
are novel and associated with Aβ40, APOE, and Aβ40/
Aβ42 biochemical levels. Aside from these novel loci, 
we also observe significant associations across the bio-
chemical measures for the APOE-ε4 tagging variant 
(rs429358). Notably, we detected a signal within NEC-
TIN2 nearby the APOE locus that cannot be entirely 
explained by APOE-ε4. These results demonstrate the 
contribution of genetic factors besides APOE-ε4 at 
the APOE locus to the variability of brain biochemical 
states of AD-related proteins.

Our study also provides insights into the pathological 
mechanisms through which the APOE and novel loci may 
act through to influence the brain biochemical meas-
ures. Although the APOE-ε4 variant (rs429358) and the 

NECTIN2 variant (rs283815) were associated with meas-
ures of APOE, Aβ40, and Aβ40/42 ratio, these variants 
did not show significant associations with Aβ42, total tau, 
and p-Tau, consistent with previous findings in this data-
set [32]. These results suggest that the APOE locus may 
influence mechanisms associated with levels of APOE 
and Aβ40 proteins rather than Aβ42 or tau in the brain. 
This contrasts with some previous studies that suggest 
the APOE locus does affect tau levels independent of Aβ 
[73, 107, 108], others showing brain region specific effects 
of APOE-ε4 [109–111], while another study showed an 
interaction effect [112]. In our current study, while we 
cannot rule out the possibility there may be associations 
at the APOE locus that affect Aβ42 or tau brain bio-
chemical levels, based on the 95% confidence intervals of 
these associations (Table S6), these effects would likely be 
small. Nonetheless, it will be important for future studies 
to investigate this further in additional datasets, particu-
larly those with tissue fraction specific data such as ours, 
case-control cohorts, and longitudinally.

Importantly, this study identified additional, biologi-
cally congruent associations for five of the seven novel 
loci including SLC9A9, SCIN, NPAS3, ITGB4, and 
STRN4. Based on the associations of the APOE locus, we 
would expect increased Aβ40TX (SLC9A9 and STRN4) 
to correlate with increased AD risk while increases in 
 APOETX (SCIN and NPAS3) and Aβ40TBS (ITGB4) would 
correlate with decreased AD risk. Remarkably, we see 
these relationships recapitulated in the independent 
datasets we evaluated. The likely detrimental variants 
at loci SLC9A9 and STRN4 associate with increased AD 
risk, Braak, Thal, CSF p-Tau, and/or plasma p-Tau levels, 
while the likely beneficial variants at loci SCIN, NPAS3, 
and ITGB4 associate with decreased Thal and CSF p-Tau 
levels, increased CSF amyloid levels, and/or trending 
with decreased amyloid PET measures. These biologi-
cally congruent associations in independent datasets pro-
vide support that the effects of these novel loci on brain 
biochemical levels may have roles in the broader patho-
physiology of AD.

Of the novel loci, SLC9A9 which significantly asso-
ciates with Aβ40TX also has nominal associations and 
trends with higher levels of CAA, Braak, Thal, plasma 
p-Tau, and AD risk. In a previous study, Aβ40TX levels 
were shown to positively correlate with CAA scores [32]. 
Our findings suggest that the SLC9A9 locus may influ-
ence AD neuropathologies, including CAA, by mediating 
brain Aβ40TX levels. SLC9A9 encodes a sodium hydro-
gen exchanger with multiple functions in regulating the 
endosome, an organelle critical for the processing of 
amyloid [113]. Notably, the SLC9A9 locus has associa-
tions with other AD-related phenotypes such as work-
ing memory [87], response to cholinesterase inhibitors in 
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AD [88], and other neuropsychiatric diseases [114–116]. 
Based on our findings, we postulate that fundamental 
functions of SLC9A9 in the endosome, including amyloid 
processing, may underlie its influence on AD and other 
neuropsychiatric disease-related outcomes.

Many of the other index genes discovered in our brain 
biochemical endophenotype GWAS have established 
roles relevant to AD pathology, neurological disorders, 
and brain function. The KCNN2, RFX7, STRN4 and 
ITGB4 loci significantly associate with brain Aβ40 lev-
els, the first three for the membrane-bound (TX) and 
the last for the soluble (TBS) fraction. KCNN2, which 
encodes a calcium-activated potassium channel, resides 
at a locus with many other AD-related and neuropsychi-
atric associations (Table S9). In a transcriptional network 
analysis, KCNN2 was the top-ranked network driver gene 
for classifying AD cases vs. controls [117] and has been 
shown to have alternative splicing in AD [118]. STRN4, 
like SLC9A9 and KCNN2, encodes a membrane-bound 
protein. STRN4 was reported to be a key binding part-
ner and possible regulator of MAP4K [119], the inhibi-
tion of which was shown to be neuroprotective [120, 
121]. MAP4K is an upstream regulator of YAP [119], the 
deficiency of which by Aβ sequestering led to neuronal 
necrosis in the early stages of AD [122]. These find-
ings imply that STRN4 may be a potential regulator of a 
molecular cascade, including MAP4K and YAP involved 
in neuronal health and Aβ metabolism. We also found 
evidence through transcriptome studies that another 
gene at the STRN4 locus, PRKD2-a protein kinase- may 
be the index gene. Future studies are needed to distin-
guish the actual functional gene at this locus.

Of the four  AB40TX associated loci genes, RFX7 is the 
only transcription factor. Gene-based rare variant analy-
sis of RFX7 in the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) cohort showed trending significance 
with entorhinal cortex thickness [123]. ITGB4, the index 
gene at the Aβ40TBS locus, encodes a transmembrane 
integrin involved in cell-to-cell adhesion, is differentially 
expressed in AD [124–127] with potential roles in the 
blood-brain barrier [128, 129], schizophrenia and bipolar 
disorder [130].

Though most of the novel associations were with brain 
Aβ40 biochemical fractions, our study also discovered 
two significant loci, NPAS3 and SCIN, for brain  APOETX 
levels. NPAS3, encoding neuronal PAS domain protein, 
has been implicated in neurogenesis [131], general cogni-
tive function [132, 133], psychiatric disorders [134] like 
schizophrenia [135], and has protein aggregation poten-
tial [136]. NPAS3 is also known to regulate transcrip-
tional levels of VGF [137–139] which is a key regulator 
in protection against AD pathogenesis in 5xFAD mice 
models [117] and a top target identified by the AMP-AD 

consortium (agora. adkno wledg eport al. org/). Finally, 
SCIN which encodes an actin-binding protein has vari-
ants that associate with inflammation markers [102] and 
rate of cognitive decline in ADs [140]. The SCIN locus 
variant associated with higher  APOETX is also associated 
with lower Thal phase in the same cohort, suggesting that 
higher membrane-bound levels of APOE might have a 
protective role in AD. Notably, upregulated expression of 
SCIN was identified as part of a pan-neurodegenerative 
gene signature across AD, Lewy Body disease, and ALS-
FTD [141].

In summary, investigating the functions and other 
genetic associations of the index genes near biochemi-
cal endophenotype GWAS loci support the conclusion 
that these genes and loci have functional consequences 
on brain health and neuropsychiatric disease. While such 
genetic localizations do not definitively prove the involve-
ment of the index genes in the tested phenotypes, they 
nevertheless provide new testable hypotheses. Moreover, 
these findings underscore the potential of brain biochem-
ical endophenotypes in the discovery of novel AD-related 
genes and pathways. Indeed, using the genetic associa-
tion findings from our GWAS, we detected shared and 
distinct enrichment in GO pathways known to be impor-
tant in AD risk as well as novel pathways. In general, 
these shared biological pathways highlight known broad 
biological processes in AD such as synapse organization 
or immune functions. In contrast, distinct pathways pin-
point processes that may relate to specific functions or 
biochemical states of these proteins, such as lipid metab-
olism for APOE and peptide cross-linking for soluble 
Aβ42TBS and p-TauTBS, respectively. This suggests that 
genetic influences affect not only total levels but also spe-
cific biochemical states of these AD-related proteins in 
the brain. These findings have implications for identify-
ing therapeutic targets that may play a role in the transi-
tion of these proteins into pathogenic biochemical states 
rather than their overall levels.

In this study, we also investigated the functional mecha-
nisms of the GWS loci by expression and splicing QTL, as 
well as bulk and single-cell transcriptome analyses of our 
and other published data. QTL analyses suggested that 
STRN4-Aβ40TX rs34805055, ITGB4-Aβ40TBS rs9890231, 
and APOE/NECTIN2-APOETBS rs283815 may modulate 
brain biochemical levels by impacting the expression or 
splicing of nearby genes, PRKD2, ITGB4, and TOMM40, 
respectively. Differential expression of genes at each locus 
revealed significant bulk or cell-specific transcriptional 
changes in AD for PRKD2, ITGB4 and APOE/NECTIN2/
TOMM40. Even so, colocalization analyses suggested 
that these signals are not a result of a single causal variant 
except for rs34805055-Aβ40TX (STRN4)-PRKD2 eQTL in 
the Mayo TCX dataset which had inconsistent evidence 

https://agora.adknowledgeportal.org/genes
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of colocalization. It should be noted, however, that many 
of these colocalization analyses included small datasets 
from healthy individuals which may not have enough 
power to reject the null hypothesis. Additional transcrip-
tome studies, particularly cell type specific QTLs, are 
needed to further characterize the putative regulatory 
function of these variants.

Notably, our study identified novel GWS loci for brain 
biochemical levels of AD proteins that were missed 
in prior studies investigating CSF levels of these pro-
teins [73] or overall neuropathology [100]. This is likely 
because these studies capture more global brain changes 
or represent combined biochemical states of these pro-
teins. With the exception of APOE-ε4, none of the GWS 
variants identified here associated with all three bio-
chemical fractions of a protein, suggesting that these 
loci likely reflect the genetic determinants for specific 
biochemical states of these proteins. Our findings high-
light the potential for deep biochemical phenotyping and 
demonstrate that this approach can dissect the genetic 
loci and pathways involved in the specific biochemical 
states of AD-related proteins, which in turn has implica-
tions for understanding disease mechanisms and thera-
peutic development.

Our study has many strengths including extensive bio-
chemical measures of key AD proteins Aβ, tau and APOE 
from three brain tissue fractions in a large sample of neu-
ropathologically diagnosed AD patients. We validated 
and annotated the significant GWAS loci genes and vari-
ants by leveraging additional large-scale WGS, RNA-seq, 
and scRNA-seq datasets with Braak, Thal, CAA, age 
at death, and additional AD-related biomarker meas-
ures. We demonstrated enriched pathways that are both 
shared as well as those that are AD-protein and biochem-
ical state-specific.

Nevertheless, this study has several limitations includ-
ing the biochemical measures being available from a sin-
gle neuropathologically-diagnosed AD cohort of 441 
individuals; to our knowledge other autopsy AD cohorts 
with such deep brain biochemical phenotyping are lack-
ing. Although we have leveraged other AD-related out-
come associations from these and other independent 
samples to validate and annotate our findings, future 
studies in additional samples with brain biochemical 
measures are needed for replication as well as increased 
power. It should also be noted that since we used a more 
liberal minor allele frequency threshold of 2% and thus 
five of the novel GWS variants are low frequency (< 5%), 
we validated all novel index GWS variants with secondary 
confirmation methods and demonstrated high concord-
ance with and reliability of our GWAS imputed geno-
types. Nonetheless, the low frequency of these variants 
in combination with the relatively small GWAS sample 

size may influence the precision of our effect estimates. 
Additional studies to expand this work into larger data-
sets should be performed in the future to confirm these 
effects. Additionally, although we perform a multiple test-
ing correction of the GWS threshold for the increased 
number of independent variants, we do not perform 
an additional correction for the number of biochemical 
measures tested, as these measures are not independent 
of each other [32]. We also note that our AD samples have 
other co-pathologies, as is commonly observed in neuro-
pathologic AD. Thus, there is a possibility that these co-
pathologies may have reduced the power of this study by 
introducing further heterogeneity. Despite this potential 
confounding, we were still able to achieve GWS for APOE 
and 7 novel loci. We note that of the biochemical endo-
phenotypes analyzed, APOE and Aβ40 had GWS associa-
tions, but not tau or Aβ42. This may be because certain 
proteins in specific biochemical states may be under 
stronger genetic control vs. may have more precise meas-
urements reflecting their true biological variability vs. 
a combination of these factors. Larger scale studies with 
increasing measurement precision may reveal genetic fac-
tors governing the other biochemical measures. Finally, 
this study was conducted on non-Hispanic white individ-
uals of Northern European descent, making it necessary 
to expand it to individuals of non-European ancestry.

Conclusions
Our results strongly suggest that, although the biochemi-
cal measures tested reflect proteins core to the pathology 
of AD, there are unique genetic loci associated with and 
enriched biological pathways for specific brain biochemi-
cal states of these proteins. These findings are expected to 
dissect the pathophysiology of the biochemical state of AD 
and finesse therapeutic target discovery efforts focused on 
these proteins. More broadly, this study presents a new 
approach that will be applicable to other neurodegenera-
tive diseases to uncover novel mechanisms of proteostasis.
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