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Abstract 

Background Multiple lines of evidence support peripheral organs in the initiation or progression of Lewy body dis‑
ease (LBD), a spectrum of neurodegenerative diagnoses that include Parkinson’s Disease (PD) without or with demen‑
tia (PDD) and dementia with Lewy bodies (DLB). However, the potential contribution of the peripheral immune 
response to LBD remains unclear. This study aims to characterize peripheral immune responses unique to participants 
with LBD at single‑cell resolution to highlight potential biomarkers and increase mechanistic understanding of LBD 
pathogenesis in humans.

Methods In a case–control study, peripheral mononuclear cell (PBMC) samples from research participants were 
randomly sampled from multiple sites across the United States. The diagnosis groups comprise healthy controls (HC, 
n = 159), LBD (n = 110), Alzheimer’s disease dementia (ADD, n = 97), other neurodegenerative disease controls (NDC, 
n = 19), and immune disease controls (IDC, n = 14). PBMCs were activated with three stimulants (LPS, IL‑6, and IFNa) 
or remained at basal state, stained by 13 surface markers and 7 intracellular signal markers, and analyzed by flow 
cytometry, which generated 1,184 immune features after gating.

Results The model classified LBD from HC with an AUROC of 0.87 ± 0.06 and AUPRC of 0.80 ± 0.06. Without retrain‑
ing, the same model was able to distinguish LBD from ADD, NDC, and IDC. Model predictions were driven by pPLCγ2, 
p38, and pSTAT5 signals from specific cell populations under specific activation. The immune responses characteristic 
for LBD were not associated with other common medical conditions related to the risk of LBD or dementia, such 
as sleep disorders, hypertension, or diabetes.

Conclusions and Relevance Quantification of PBMC immune response from multisite research participants yielded 
a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, and autoimmune diseases 
thereby highlighting potential biomarkers and mechanisms of disease.
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Background
Lewy Body Disease (LBD) comprises a spectrum of clini-
cally and pathologically overlapping conditions: Demen-
tia with Lewy Bodies (DLB) and Parkinson’s Disease 
(PD) with or without Dementia (PDD) [1–5]. Human 
genetic, biochemical, and pathological evidence, as 
well as experimental models, support involvement not 
only by neuroinflammation [6–8] but also a peripheral 
immune response in the initiation and/or progression of 
LBD [6, 9–13]. While there is intense interest in the sys-
temic origins of pathologic alpha-synuclein, the role of 
the peripheral immune system in LBD remains unclear. 
One possibility is that subsets of peripheral immune cells 
migrate into the brain and consequently play a direct 
role in neurodegeneration [14]. Alternatively, peripheral 
immune cells may serve as biomarkers of an inherited 
or acquired trait shared by both peripheral and brain 
immune cells without peripheral cells directly contrib-
uting to neurodegeneration. Past research has explored 
peripheral blood mononuclear cells (PBMCs) as a plat-
form to gain insights into the development of LBD with 
a focus on changes in the proportion of specific cell types 
[15–20] or concentration of intercellular signals such as 
interleukins (ILs) [21–24]. While alteration of intracel-
lular signaling in PBMCs of cognitively impaired or Alz-
heimer’s Disease (AD) participants has been explored 
previously [25–29], only a handful of studies have pro-
filed PBMC intracellular signaling for LBD [30–32]. 
Moreover, most of these investigations of PBMCs in LBD 
have been limited by small sample sizes, single cohorts, 
bulk analysis, and lack of disease controls to determine 
non-specific changes related to neurodegenerative dis-
eases or immune-mediated diseases.

This study sought to address several of these limita-
tions through a rigorous profiling of peripheral immune 
responses by PBMCs from 399 age- and sex-matched 
multisite research participants diagnosed with LBD, 
other neurodegenerative diseases (NDC), or healthy 
controls (HC). Fourteen additional samples also were 
obtained from participants at a single site who were 
diagnosed with autoimmune disease. Samples were 
unstimulated or activated with three different canonical 
immune stimulants to gain functional insight and then 
assayed with a panel of markers that resolved 37 different 
cell types and the intracellular signaling pathways that 
were selected to encompass those previously implicated 
by genetic risk and their associated pathways [33–36]. 
Specifically, the cytometry panel and stimulants were 
selected such that the surface markers allow us to maxi-
mize the number of different immune cell types and to 
cover the cell types with strong signals for neurodegen-
erative diseases from our prior work [25]. The intracel-
lular signals were a subset of our previous study and were 

chosen due to their relatedness to neurodegenerative dis-
eases through different proposed mechanisms. For exam-
ple, PLCG2 was previously suggested to have a broad 
influence on the mechanisms of microglial activity and 
preserving synaptic integrity related to neurodegenera-
tion [37–40], peripheral pSTATs were indicated for AD 
in our previous study [25], and p38 MAPK was involved 
in the process of neuronal death in various neurodegen-
erations [41, 42].

Methods
Study design
This study aimed to determine whether differences in 
peripheral immune responses between healthy controls 
(HC) and research participants with LBD (PD, PDD, 
and DLB) are detectable by flow cytometry analysis of 
PBMCs. In addition, we included samples from other 
research participants for neurodegenerative disease 
controls (NDC) and participants with autoimmune dis-
eases for immune disease controls (IDC) to control for 
nonspecific effects of debilitation from neurodegenera-
tion and immune-mediated diseases, neither group was 
used to train the model in any part, but to evaluate for 
nonspecific effects that debilitation from neurodegen-
eration might have on the PBMC response to stimula-
tion. Diagnoses (ADD, PD, LBD, NDCs) were made using 
published diagnostic criteria, as described in the NACC 
Uniform Data Set Coding Guidebook (Version 3, 2015) 
[43–48] and multiple sclerosis (MS) diagnosis in IDC 
group were made using the 2017 McDonald criteria [49]. 
Participants were research volunteers at Stanford Alzhei-
mer’s Disease Research Center or the Pacific Udall Center 
(Stanford ADRC), Stanford BIG Project (BIG), and many 
other Alzheimer’s Disease Research Centers (ADRCs), 
whose samples were aggregated and distributed by the 
National Centralized Repository for Alzheimer’s Dis-
ease and Related Dementias (NCRAD). All participants 
provided written informed consent to participate in the 
study, which followed protocols approved by the Stanford 
Institutional Review Board. Clinical diagnosis was made 
by consensus criteria.

Blood was collected from a total of 399 volunteers 
stratified into seven diagnosis groups: HC (n = 159), 
LBD (total n = 110 including 60 PD without dementia, 
32 PD with dementia (PDD), and 18 DLB), Alzheimer’s 
disease dementia (ADD, n = 97), other neurodegenera-
tive disease controls (NDC; n = 19), and immune disease 
controls (IDC; n = 14). Diseases comprising NDC were 
frontotemporal lobar degeneration (n = 6), primary pro-
gressive aphasia (n = 2), vascular brain injury (n = 8), and 
traumatic brain injury (n = 3). IDC group were partici-
pants with primary (n = 8) and secondary (n = 6) progres-
sive multiple sclerosis. HCs were individuals who were 
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not diagnosed with any neurological disease and had no 
cognitive impairment. AD, LBD (PD/PDD/DLB), and 
NDC participants had a single clinical diagnosis without 
clinical comorbidity. Demographic data for each group 
is shown in Table  1. The percent contribution of each 
diagnosis group from each site was 35% Stanford ADRC 
and 65% NCRAD for HC, 35% Stanford ADRC and 65% 
NCRAD for ADD, 92% Stanford ADRC and 8% NCRAD 
for LBD, 100% NCRAD for NDC, 100% BIG for IDC. 
Beyond diagnoses, the associated data include informa-
tion collected by NACC, such as demographics, cognitive 
exam scores, Unified Parkinson’s Disease Rating Scale 
(UPDRS), and non-neurodegenerative disease comor-
bidities. However, this study did not have data on the 
presence of fever and/or recent infectious processes, and 
hence their effects were not assessed. The protocol for 
PBMC collection and storage by each site can be found in 
the Supplementary Materials.

Flow cytometry experiment
All cytometry experiments were performed at Stanford. 
Samples from different diagnosis groups were randomly 

and blindly assigned to each of the 42 batches to prevent 
confounding between diagnoses and batches. PBMCs 
were isolated by density-gradient centrifugation and cry-
opreserved. Post-thaw, cells were washed in a complete 
RPMI medium with benzonase. Cell viability as measured 
by Vi-Cell (Beckman Coulter) for all samples was above 
90%. After resting for 2  h at 37  °C, PBMCs were either 
left unstimulated or stimulated with one of three stimu-
lants: IFNα (10,000 units/ml), IL-6 (50  ng/ml) or LPS 
(200 ng/ml) for 15 min, at 37 °C. Stimulation was stopped 
by fixing cells with paraformaldehyde for 10 min at room 
temperature. Stimulant doses and exposure time points 
were optimized in our previous studies [50]. PBMCs 
from healthy donors at the Stanford Blood Center, whose 
phosphoprotein responses to stimulation were well-
characterized in our lab, were used for quality assurance. 
Including these positive control samples with each batch 
ensured the expected phosphorylation response from the 
controls and validated the stimulation and staining con-
ditions [50–52]. After washing cells with PBS, samples 
were stained with LIVE/DEAD™ Fixable Blue Dead Cell 
Stain Kit, for UV excitation (from Invitrogen) for 15 min 

Table 1 Cohort statistic summary stratified by diagnosis groups

Abbreviations: AD Alzheimer’ disease, CIND Cognitively impaired, but not dementia, HC healthy controls, IDC immune disease controls, LBD Lewy body disease, NDC 
neurodegenerative disease controls, PD Parkinson’s disease
* P values based on one way ANOVA for continuous variables and chi-square or Fisher’s exact tests for categorical variables

HC
n = 159

AD
n = 97

LBD
n = 110

NDC
n = 19

IDC
n = 14

Overall P*
Pairwise

Age
 Mean (SD) 73.0 (6.0) 74.8 (8.0) 72.2 (7.2) 52‑ 73.4 (6.9) 67.2 (3.3) 63 0.002

 Range 55–95 51–91 92 67—84 ‑ 74 AD, HC > IDC

Gender
 N (%) Female 90 (56.6%) 57 (58.8%) 50 (45.5%) 12 (63.2%) 10 (71.4%) 0.147

Race N (%) N = 156 N = 95 N = 105

 White 126 (80.8%) 84 (88.4%) 99 (94.3%) 16 (84.2%) 13 (92.9%) 0.123

 Black 2 (1.3%) 1 (1.1%) ‑ 1 (7.1%)

 American Indian/Alaskan Native 1 (0.6%) ‑ 1 (1.0%) ‑ ‑

 Native Hawaiian/Pacific Islander ‑ ‑ ‑ ‑ ‑

 Asian 25 (16.0%) 9 (9.5%) 5 (4.8%) ‑ ‑

 Other/mixed race 2 (1.3%) 1 (1.1%) ‑ 3 (15.8%) ‑

Education N = 95 N = 105 N = 18

 Mean (SD) 16.9 (2.3) 15.8 (3.2) 17.1 (2.3) 16.4 (3.5) ‑ 0.003

 Range 12—22 8—24 12—20 8—23 LBD, HC > AD

Cognitive status N (%) N = 158 N = 96 N = 103 ‑

 No cognitive impairment 162 (100.0%) ‑ 55 (53.4%) 9 (47.4%) LBD vs. NDC:

 CIND ‑ ‑ 30 (29.1%) 18 (17.5%) 4 (21.1%) 0.399

 Dementia ‑ 96 (100.0%) 6 (31.6%)

Use of AD medications N = 105  < 0.0001

 N (%) ‑ 64 (66.0%) 20 (19.1%) 3 (15.8%) ‑ AD > LBD, NDC

Use of PD medications N = 63 N = 91  < 0.0001

 N (%) ‑ 3 (4.8%) 80 (87.9%) 3 (15.8%) ‑ LBD > AD, NDC
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at room temperature. After live dead staining, cells were 
washed with wash buffer (Phosphate buffered saline, 2% 
Fetal bovine serum, 0.1% sodium azide), followed by sur-
face staining with anti- CD4(BUV805), CD7 (AF780), 
CD8 (AF700), CD11b (BUV395), CD14 (BUV737), 
CD16 (BV750), CD19 (PerCP-Cy5.5), CD27 (BV711), 
CD56 (BUV563), CD69 (BUV661), HLA-DR (BV480) 
(antibodies from BD Biosciences), CD3 (BV605) and 
CD45RA (BV570) (antibodies from BioLegend). Stain-
ing was done at room temperature for 30  min. After 2 
washes, cells were permeabilized with ice-cold methanol 
and were stored overnight at -80  °C. Post permeabiliza-
tion, cells were washed again, and intracellular staining 
was done with anti-pSTAT1 (AF488), pSTAT5 (PE-Cy7), 
pP38 (PE), pPLCγ2 (APC), pS6 (BV421), CD107b/Lamp2 
(BV786), (antibodies from BD Biosciences) and Rab5 
(PE-CF594) (from Santa Cruz Biotechnology) at room 
temperature for 30  min. After two further washes, the 
acquisition was performed on a BD Symphony A5 flow 
cytometer with a High Throughput Sampler (HTS) and 
analyzed using FlowJo software where median expres-
sions were collected for each gated cell type. The reagents 
and the gating scheme can be found in Table S1 and Fig. 
S1. To mitigate possible confounded effects between 
class imbalance between sites, the Combat algorithm by 
the pyCombat [53] package was used. Combat removes 
site effects by modeling the data as a combination of site 
effects and biological signals, then use empirical Bayes 
to estimate the site effect parameters and subtract them, 
normalizing the data across batches while retaining the 
true biological variation [54]. Note that there was no 
missing data from flow cytometry and no outliers were 
excluded. Eight participants were excluded due to ambig-
uous diagnoses: five HCs who took PD medications, an 
HC who in later visits showed cognitive impairment, an 
AD participant with an unclear AD diagnosis, and an 
NDC with a NACC etiologic diagnosis of “Other.”

Data analysis
Machine learning is a common tool for extracting insight 
from high-dimensional cytometry data [55, 56]. Here, 
light gradient-boosting machine (LGBM) [57] was used 
as it outperformed other machine learning models (Fig. 
S2), including logistic linear, random forest, and feed-
forward neural network models, in our dataset. To maxi-
mize generalizability, the performance was evaluated 
using 10 repeated fourfold cross-validation. In each itera-
tion, the data were randomly split into 4 equal portions. 
The model was trained on 3 of those (training set), and 
tested/evaluated on the last unseen portion (test set). 
Due to the random nature, the train/test samples in each 
iteration were different. This provided a comprehensive 
view of the model’s performance. For the classification 

of the three main groups, HC and IDC were merged 
and labeled 0, and the disease group (LBD or ADD) was 
labeled 1. The test set prediction values were used for 
subsequent analyses and visualizations. The model per-
formance metrics include the Area Under the Receiving 
Operating Characteristic (AUROC) and the Area Under 
the Precision-Recall Curve (AUPRC). For differential pre-
dictions, e.g. ADD vs. LBD or NDC vs. LBD, the primary 
model trained for HC vs. LBD was used without retrain-
ing. For the prediction of LBD subgroups (PD, PDD, 
DLB), comorbidities, and motor examinations, LGBM 
was also used with the same cross-validation setup 
except that a subsampling technique was used to ensure 
balanced age and sex ratios between case and controls. 
Methods for model reduction and correlation networks 
can be found in the Supplementary Materials.

Results
Overview of the cohort and immune features
Samples were from individuals with one of these clini-
cal diagnoses: healthy controls (HC), LBD, ADD, other 
neurodegenerative disease controls (NDC), or autoim-
mune disease controls (IDC) (Table  1). All diagnosis 
groups were exclusive, e.g. no participants were diag-
nosed with both LBD and AD. Each individual’s PBMCs 
were stimulated with LPS, IFNa, IL6, or unstimulated, 
followed by staining and measurement of cell type-spe-
cific abundance and intracellular signaling (see Methods 
Section), including Lamp2, p38, pPLCγ2, pS6, pSTAT1, 
pSTAT5, and Rab5. After cell type gating, there were 
1,184 immune features total in each of the 399 individual 
PBMC samples (Fig. 1A).

The immune feature landscape (Fig. 1B) indicates that, 
regardless of stimulation and cell type, features from the 
same intracellular signals tended to be highly correlated 
with each other, aligning with known intracellular signal-
ing cascades. A subset of pSTAT1, pSTAT5, and pPLCγ2 
were highly correlated, whereas pS6 was the least cor-
related to other signals. A t-SNE plot for participants 
landscape colored by site indicated that batch correction 
was effective as there was no apparent site-specific clus-
ter (Fig. 1C left). While there could be other confounding 
factors other than sites, Fig. 1C shows that all diagnosis 
groups were well distributed, hence allaying concerns of 
any strong effects introduced by confounders.

Immune features differentiate LBD from HC and other 
diseases
The machine learning model (LGBM) exhib-
ited strong performance for separating LBD from 
HC (Area Under the Receiver Operating Curve 
[AUROC] = 0.87 ± 0.06, Area Under Precision-Recall 
Curve [AUPRC] = 0.80 ± 0.06; the AUROC corresponds 
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to power = 1 at α = 0.05 after Bonferroni adjustment; 
Fig.  2A), while predictions were essentially random for 
HC vs. ADD (AUROC = 0.50 ± 0.05, AUPRC = 0.39 ± 0.04, 
power < 0.80 at adjusted-α = 0.05). It should be noted 
that random guess would yield an AUROC of 0.50, and 
an AUPRC equivalent to the prevalence of the posi-
tive class, which is displayed as patterned gray bars in 
all figures. The uneven distribution of LBD among sites 
could be concerning; however, even if the training and 
test set were split by site, instead of random cross-vali-
dation, or if only the Stanford cohort was included, the 
model still achieved high performance for HC vs. LBD 

(AUROC = 0.76 in Fig.  2B; AUROC = 0.81 ± 0.08 in Fig. 
S3). Additionally, the model trained to predict HC-LBD 
yielded an AUROC of 0.55 ± 0.18 when transferred with-
out retraining to predict batches. This indicates that the 
batch effect, if any, did not intervene with the diagnosis 
signals picked up by the model. This indicates that there 
was a generalizable pattern of PBMC response for par-
ticipants with LBD regardless of clinical subgrouping. To 
ensure that these immune features were unique to LBD, 
the same HC vs. LBD model was used to predict ADD vs. 
LBD, NDC vs. LBD, and IDC vs. LBD without retraining. 
All of these comparisons resulted in high performance 

Fig. 1 Overall Experiment and Resulting Immune Landscape. A Diagram of the experiment. PBMCs were collected from diagnosis groups 
at Stanford ADRC, Stanford BIG, and NCRAD, which in itself aggregated samples from multiple sites. This was followed by stimulating the PBMCs 
with one of three different canonical immune activators or vehicle control, immunolabelling for surface and intracellular markers, and measuring 
the cell‑specific signals using flow cytometry. Single‑cell signals were manually gated to different cell types, resulting in 1,184 immune features 
for each PBMC sample that were then used by machine learning for the identification of biomarkers. B A correlation network (edges represent 
Pearson’s R > 0.7) indicates that the immune landscape was mostly determined by the intracellular signals, i.e. the same intracellular signals tend 
to be correlated to each other despite different cell types and stimulating conditions. C The t‑SNE plots suggest that there was not a strong effect 
by the site of sample collection (left), and that samples from different diagnosis groups were well distributed overall (right)
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with all AUROC above 0.79 (Fig. 2C). Neurodegenerative 
diseases commonly co-occur in older individuals [58]. 
While the NDC is an appropriate cohort to represent 
a group of these diseases for real-world implications, it 
should be noted that the group does not have sufficient 
granularity to compare with a specific disease subgroup. 
However, the achieved AUC of 0.83 (Fig. 2C) was strong 
and yielded a power of 1 and was still at a power of 0.97 
(adjusted-α = 0.05) even if we limit the control number 
to the same as the case number. Corresponding to these 
AUROC performances, Fig. 2D shows that the predicted 
values for LBD in the test set were significantly different 

from all other diagnoses. Moreover, the residual of the 
model predictions (Fig.  2E) was not significantly cor-
related with sex, age, APOE epsilon 4 allele status, or 
Levodopa dosage; however, the model’s residuals were 
significantly correlated with PD vs. PDD or DLB vs. PD/
PDD, indicating that the model performed equally well 
across these major variables except within the LBD diag-
nosis group.

Model reduction indicated that only the top 4 immune 
features were necessary to achieve a satisfactory predic-
tion performance, and 32 features would yield similar 
performance as using all 1,184 immune features (Fig. 2F). 

Fig. 2 Models developed from multi‑site data suggest peripheral biomarkers for LBD. A The model performance suggested good separation for HC 
vs. LBD, but not for HC vs. ADD. Note that a random guess baseline would yield an AUROC of 0.50 and an AUPRC equivalent to the prevalence 
of the positive class in the sample group, which are shown as patterned gray bars. B Performance using cross‑site splitting instead of random 
cross‑validation suggests the generalizability of the biomarkers. C Transferring the HC vs. LBD model (without retraining) to classify LBD from disease 
controls, including ADD, NDC, and IDC, yielded similarly high performance. D The predicted values from the HC vs. LBD model for all diagnosis 
groups show that the model is LBD‑specific. E Model residual (errors from each prediction) did not significantly (M.W.U. P < 0.05) vary with sex, 
age, Levodopa dosage, APOE e4 status, or PD vs. PDD. This indicates that the model performed equally well across these variables. In contrast, 
the model’s residual varied for the DLB vs. PD/PDD group, suggesting that the performance of the DLB group differed from the PD/PDD group. 
F The required number of top immune features needed to achieve similar performance as all 1,184 features. G Correlation network highlighting 
the top features and the immune features with which they are correlated
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The top 4 immune features for LBD were highlighted in 
the immune feature correlation network (Fig. 2G). They 
include reduced pPLCγ2 response from LPS-stimulated 
CD14 + CD16 + monocytes, elevated p38 response from 
unstimulated CD69 + B cells, and frequency of IFNa and 
LPS-stimulated B cells.

Due to the high correlations among immune features, 
the model may only select a few representative ones, 
and interpretation from the model alone may leave out 
other important biological features. For this reason, 
other immune features were investigated from a univar-
iate perspective. Heatmaps of the correlations between 
the top intracellular signals and LBD diagnosis show 

cell type-specific signals, including: reduced expression 
of pPLCγ2 in CD69 + NK cells, transitional monocytes 
(TM), and CD11b + HLA-DR + TM; reduced expres-
sion of pSTAT5 in multiple CD4 + cells; and elevated 
expression of p38 in multiple CD4 + and CD8 + cells in 
participants with LBD compared to HC (Fig. 3A). Note 
that because neurodegenerative disease groups and HC 
are sex- and age-matched, adjusting these correlations 
by sex and age did not change any signals for the diag-
noses (Fig. S4). Notably, these signals were significantly 
different between LBD vs. HC and LBD vs. ADD but 
not between LBD vs. NDC or LBD vs. IDC (Fig.  3B), 

Fig. 3 Strong signals for HC vs. LBD were cell‑type specific. A The heatmap of selected intracellular signals (or frequency) from all cell types shows 
the cell types with the strongest correlations to LBD. B Examples of the top univariate immune features
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highlighting the need to integrate multiple immune fea-
tures and non-linear models.

Differential signals separating DLB, PD, and PD 
with cognitive impairment
So far, we have determined a unique peripheral immune 
pattern for participants with LBD compared to HC, 
ADD, and other neurodegenerative or autoimmune dis-
ease controls. However, as noted above, participants with 
LBD are a mix of individuals with three different clinical 
diagnoses (PD, PDD, and DLB) that can be difficult to 
distinguish clinically with precision and that can merge 
over time. Our results show that each of these diagnos-
tic subgroups of LBD can mostly be separated from HC 
moderately well with the exception of HC vs. DLB which 
exhibited the lowest performance (AUROC = 0.62–0.89, 
AUPRC = 0.29–0.71, power = 0.40–1 at adjusted-α = 0.05; 

Fig.  4A). Transferring these models without retraining 
to cross-predict among themselves, e.g. PD vs. PDD or 
PDD vs. DLB, exhibited moderately low performance 
(AUROC = 0.54–0.65, power < 0.80 at adjusted-α = 0.05; 
Fig.  4B). The moderate classification performance indi-
cates that PD, PDD, and DLB share some critical PBMC 
immune responses in addition to the known shared neu-
ropathological features. Interestingly, the model trans-
fer to classify each LBD subgroup vs. ADD resulted in 
high AUROC (> 0.84) for both PD and PDD (Fig. 4B) but 
not as high for ADD vs. DLB (AUROC = 0.62), perhaps 
because of the well-described comorbidity between DLB 
and AD neurodegenerative change in the majority of 
people diagnosed clinically with DLB [45].

From a univariate perspective when compared with 
HC, PDD exhibited the highest number of statistically 
significant immune features (M.W.U. P < 0.01), and only 

Fig. 4 All subgroups within LBD can be separated from HC, but not among themselves. A Model performance of three separate models each 
developed for classifying HC from each of the subgroups within LBD, including DLB, PDD, and PD. B The performance of the same models (without 
retraining) classifying among each of the subgroups and all of them vs. AD. C The Venn diagrams of significant immune features for each group 
(M.W.U. P < 0.01) indicated small overlapping features among them. D The correlation network shows which immune features were unique 
to or overlapping between DLB, PDD, and PD
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a handful of these was shared by PD and DLB (Fig. 4C). 
From the univariate intracellular signals for LBD in the 
previous section, elevated p38 responses were uniquely 
associated with a diagnosis of PD with or without demen-
tia (Fig. 4D), while most of the reduced pPLCγ2 response 
and reduced expression of pSTAT5 were uniquely associ-
ated with PDD only.

Cognitive exams in multiple domains are predic-
tive of cognitive status in LBD [59], and together with 
motor exams and clinicians’ judgment, were the source 
for deriving a clinical diagnosis. We also tested if the 
immune features can predict any of the 18 neuropsy-
chological battery test scores in the cases where the data 
were available, such as trail making or MMSE, or any of 
the 23 motor examinations from the UPDRS among par-
ticipants with LBD. Our results show moderately low 
performance, indicating that the selected immune fea-
tures were not specific to these measurements in LBD 
participants (Fig. S5 & S6).

Overlap between LBD and other common comorbidities
Several diseases and conditions that are not primarily 
associated with neurodegeneration tend to increase or 
lower the risk of dementia and PD. Examples of these 
include arthritis [60], diabetes [61], hypercholesterolemia 
[62], hypertension [63], REM sleep disorder [64], sleep 
apnea [65], traumatic brain injury (TBI) [66], and vita-
min B12 deficiency (VB12DEF) [67]. This section aims to 
investigate whether the peripheral immune biomarkers 
discovered above had links with these common comor-
bidities. In the cases where comorbidities data were 
available in our sample set, individuals with these comor-
bidities were almost equally split among HC, ADD, or 

LBD (Fig.  5A) except for diabetes, which only occurred 
in HC and AD, and REM sleep disorders, which only 
occurred in LBD.

Model transfers were conducted where the model 
trained to separate HC vs. LBD was used, with-
out retraining, to classify each of the comorbidities. 
We found that only REM sleep disorder (REMDIS) 
yielded moderately good performance (AUROC = 0.73, 
power = 0.98 at adjusted-α = 0.05; Fig. 5B). We also inves-
tigated if we could identify signatures in each comorbid-
ity individually. TBI and VB12DEF achieved the highest 
AUROC (AUROC = 0.62 and 0.61, respectively) but both 
at power < 0.8 at α = 0.05. This low performance could be 
attributed to insufficient case numbers to individually 
develop an effective machine learning model (Fig. S7). 
Even though all known comorbidity data were included 
(no exclusion), their numbers were still limited due to 
their availability only in newer NACC data versions and 
above [68] (Table S2). Figure 5C shows the feature over-
laps between REMDIS and LBD from a univariate test 
(features with AUROC > 0.6). This could stem from the 
fact that all participants with REMDIS in our cohort 
had LBD, while only about 30% of participants without 
REMDIS had LBD; a future dedicated REMDIS cohort 
would be needed to decouple their confounding effects. 
In conclusion, our results suggest that the identified 
LBD signals were likely only weakly influenced by these 
comorbidities, except for the confounding REMDIS.

Discussion
Human genetic, pathologic, imaging, and biochemi-
cal data as well as results from experimental models 
have linked neuroinflammation with the initiation or 

Fig. 5 The identified LBD biomarkers did not have overlapping biological pathways with common non‑neurodegenerative comorbidities. A 
A chord diagram displaying LBD, ADD, or HC co‑occurrence with other comorbidities. Note that TBI was also included but due to a low number 
of cases (n = 6), it is now shown in the plot. B Model performances (AUROC) for all comorbidities using model transfer from HC vs. LBD showing 
that it can also classify REMDIS. C The Venn diagrams of significantly overlapped immune features among groups (M.W.U. P < 0.01)
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progression of prevalent age-related neurodegenerative 
diseases. Among these, the LBD spectrum, PD, PDD, 
and DLB, have been most strongly linked to events in 
the periphery as potential contributing mechanisms that 
impact the brain [69]. Here we tested the hypothesis that 
cell-specific immune responses by PBMCs might be asso-
ciated with LBD diagnosis, highlighting potential periph-
eral biomarkers and possibly illuminating mechanisms 
of disease. Our multisite study design included PBMCs 
from 399 participants from five diagnostic groups 
(HC, LBD, ADD, and NDC as controls for non-specific 
changes occurring with debilitation from neurodegenera-
tive diseases, and IDC to control for non-specific changes 
occurring with immune-mediated diseases) that were 
investigated in basal state or following stimulation by 
canonical immune activators to generate 1,184 molecular 
features per individual. These rich immune response data 
were coupled with extensive clinical annotation and ana-
lyzed by machine learning techniques.

Our major finding was that, within the context of our 
stimulants and multiplex panel, only 4 immune features 
were necessary to achieve similar prediction performance 
for LBD as all immune features; these were: reduced 
pPLCγ2 response from LPS-stimulated transitional 
monocytes, elevated p38 response from unstimulated 
CD69 + B cells, and increased frequency of IFNa and LPS 
stimulated B cells. Together these data suggest a broad 
alteration in peripheral immune response in participants 
with LBD that is distinct from other neurodegenerative 
and autoimmune diseases, and that involves monocytes 
and lymphocytes, establishing pathologic relevance for 
these immune response changes in people with LBD. 
Determining the pathogenic mechanisms by which these 
stimulant- and cell-specific immune responses may or 
may not directly contribute to LBD-type neurodegenera-
tion will require means of selectively manipulating each 
in isolation or combinations in model systems that faith-
fully reflect the human immune system and mechanisms 
of neurodegeneration in LBD. Future work may combine 
validated markers of immune response with markers of 
other pathological processes central to LBD pathogen-
esis, like seed propagation assays for alpha-synuclein, to 
gain a more comprehensive view of disease initiation and 
progression.

On top of identified features from the model, univari-
ate statistical analysis results highlight three immune 
response features that are strongly characteristic of 
PBMCs from people diagnosed with LBD: reduced 
pSTAT5 in CD4 + subset and reduced pPLCγ2 response 
and elevated p38 response in subsets of NK cells and TM 
cells. Our localization of elevated p38 response to lym-
phocytes in people with LBD suggests that this may be 
a feature of a subset of lymphocytes that traffic into the 

brain as immune master regulators [69]. Additionally, 
p38 is extensively related to gut immunity, inflamma-
tion, and aging [70–72]; gut physiology has been impli-
cated by many studies as a potential contributor to LBD 
[73]. PLCg2 is highly expressed in immune cells includ-
ing microglia, and gain-of-function mutations in PLCG2 
cause autoimmune diseases [37–40]. A nonsynonymous 
variant in PLCG2 is associated with reduced risk of 
ADD, DLB, and frontotemporal dementia, suggesting a 
broad influence on the mechanisms of neurodegenera-
tion, most likely neuroinflammation [33, 74]. Our results 
showed reduced phosphorylation of PLCg2, the molecu-
lar mechanism of its activation, in peripheral monocytes 
and other PBMCs of participants with LBD, thereby 
aligning with genetic data associating less active PLCg2 
with increased risk of LBD. In a previous single-site study 
we identified reduced pPLCγ2 in a small group of ADD 
participants [25]; however this result did not generalize 
to the current multisite study with 4 times more ADD 
samples. Together, these findings suggest a broad influ-
ence of PLCg2 activation in peripheral immunocompe-
tent cells in multiple forms of neurodegenerative disease 
but most robustly in LBD.

The medical and pathological distinctiveness of the 
LBD subgroups, PD, PDD, and LBD, is a decades-long 
debate [5]. We sought to determine the extent to which 
peripheral immune responses as measured here may 
potentially point to LBD subgroup-specific features. We 
observed low model prediction performance among PD, 
PDD, and DLB suggesting that at least as determined by 
our multiplex panel, PBMC immune responses are simi-
lar among the three subgroups. Further univariate analy-
sis suggested that increased signaling through pPLCγ2 
and pSTAT might be a peripheral immune feature spe-
cific to PDD and not PD or DLB. Interestingly, despite 
being predictive of LBD and its subgroups, peripheral 
immune responses were not strongly predictive of perfor-
mance on neuropsychological tests or consensus motor 
evaluation, nor were they associated with other medi-
cal conditions shown to modulate the risk of LBD. We 
speculate that the detected peripheral immune response 
in LBD subgroups may be a consequence of LBD-type 
neurodegeneration or may reveal an underlying inherited 
or acquired trait that renders a person more vulnerable 
to developing LBD without being directly involved in the 
extent of neurodegeneration.

Our study has limitations. While the overall sample size 
is adequate, some of the LBD subgroup sizes were small 
and lacked neuroimaging, biomarkers, or pathologic 
validation of clinical diagnosis. For these reasons, LBD 
subgroup comparisons should be considered prelimi-
nary. Similarly, our analyses of common comorbidities 
remain preliminary due to the limited availability of data 
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(Table S2). Additionally, data on recent infectious status/
febrile processes in our participants were unavailable. 
Also, the multisite samples were majority Caucasian or 
Asian representing a national deficit in sample diversity 
among these diseases that is currently being addressed. 
With these limitations in mind, our quantification of 
PBMC immune response from multisite research partici-
pants yielded a unique pattern for LBD compared to HC, 
multiple related neurodegenerative diseases, and autoim-
mune diseases thereby highlighting potential biomarkers 
and insights into mechanisms of LBD.

Conclusion
This study demonstrates that peripheral immune 
responses, particularly those detected in PBMCs, exhibit 
distinct patterns in participants with Lewy body disease 
(LBD) compared to healthy controls and other neuro-
degenerative or autoimmune conditions. The identified 
immune features, including pPLCγ2, p38, and pSTAT5 
signals from specific cell subsets and activations, offer 
potential biomarkers and insights into the mechanistic 
underpinnings of LBD pathogenesis. These findings con-
tribute to a deeper understanding of LBD and may pave 
the way for the development of novel diagnostic tools to 
guide the stratification of individuals with LBD enrolled 
in trials or to target immunomodulatory interventions in 
people with LBD.
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