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Abstract 

Background Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disease involving loss of motor neurons, 
typically results in death within 3–5 years of disease onset. Although roughly 10% of cases can be linked to a specific 
inherited mutation (e.g., C9orf72 hexanucleotide repeat expansion or SOD1 mutation), the cause(s) of most cases are 
unknown. Consequently, there is a critical need for biomarkers that reflect disease onset and progression across ALS 
subgroups.

Methods We employed tandem mass tag mass spectrometry (TMT-MS) based proteomics on cerebrospinal fluid 
(CSF) to identify and quantify 2105 proteins from sporadic, C9orf72, and SOD1 ALS patients, asymptomatic C9orf72 
expansion carriers, and controls (N = 101). To verify trends in our Emory University cohort we used data-independent 
acquisition (DIA-MS) on an expanded, four center cohort. This expanded cohort of 259 individuals included 50 
sporadic ALS (sALS), 43 C9orf72 ALS, 22 SOD1 ALS, 72 asymptomatic gene carriers (59 C9orf72 and 13 SOD1) and 72 
age-matched controls. We identified 2330 proteins and used differential protein abundance and network analyses 
to determine how protein profiles vary across disease subtypes in ALS CSF.

Results Differential abundance and co-expression network analysis identified proteomic differences between ALS 
and control, as well as differentially abundant proteins between sporadic, C9orf72 and SOD1 ALS. A panel of proteins 
differentiated forms of ALS that are indistinguishable in a clinical setting. An additional panel differentiated asymp-
tomatic from symptomatic C9orf72 and SOD1 mutation carriers, marking a pre-symptomatic proteomic signature 
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of genetic forms of ALS. Leveraging this large, multicenter cohort, we validated our ALS CSF network and identified 
ALS-specific proteins and network modules.

Conclusions This study represents a comprehensive analysis of the CSF proteome across sporadic and genetic 
causes of ALS that resolves differences among these ALS subgroups and also identifies proteins that distinguish 
symptomatic from asymptomatic gene carriers. These new data point to varying pathogenic pathways that result 
in an otherwise clinically indistinguishable disease.

Keywords Amyotrophic Lateral Sclerosis ALS, C9orf72, SOD1, Cerebrospinal Fluid (CSF), Weighted Gene 
Co-Expression Network Analysis (WGCNA), Differentially Abundant Proteins (DAP)

Introduction
Amyotrophic Lateral Sclerosis (ALS) is a heterogene-
ous motor neuron disease that typically results in death 
within 3–5 years [1, 2]. Clinical manifestations include 
a spectrum of upper and lower motor neuron involve-
ment and wide variability in disease progression. Roughly 
10% of ALS cases are driven by an inherited mutation, 
of which the most common are C9orf72 hexanucleo-
tide repeat expansion [3, 4] and point mutations in the 
gene for superoxide dismutase 1 (SOD1) [5]. Though the 
pathogenic mechanisms underlying the various genetic 
forms of ALS are likely to be distinct from sporadic dis-
ease, the clinical presentations are remarkably similar, 
making the discovery of biomarkers that distinguish the 
various forms of ALS of paramount importance. Also, in 
people who harbor disease-causing mutations but remain 
asymptomatic, comparison of biomarkers from the pre- 
and post-symptomatic phase will provide insight into 
potential markers of disease transition, and also mark an 
early time point when disease modifying therapies could 
be started. A focus on cerebrospinal fluid (CSF) biomark-
ers allows for interrogation of CNS protein changes that 
may differentiate disease pathways among sporadic and 
genetic forms of ALS, TDP- 43 and SOD1 pathologies, 
as well as provide tools allowing for early diagnosis and 
monitoring of disease activity. Here, our objective was to 
evaluate the CSF proteome to enhance our comprehen-
sion of both shared and distinct disease alterations asso-
ciated with CNS cell-types and pathways across sporadic 
and genetic ALS subgroups.

Mass spectrometry-based proteomics coupled with 
systems biology approaches using co-expression network 
analysis is a valuable tool for discovery of disease bio-
markers and pathways, including in ALS and Alzheimer’s 
Disease [6–10]. Unbiased proteomics of human brain 
and CSF coupled with network analysis has emerged as 
a method for organizing proteome-wide expression data 
into groups or “modules” of highly correlated proteins 
that reflect various biological functions linked to neuro-
degeneration [11]. While ALS brain proteomic networks 
have been examined [6], ALS CSF proteomic networks 
from large cohorts that include sporadic and familial ALS 

across different mutations, and asymptomatic carriers, 
are under-investigated.

To achieve this, we conducted unbiased proteomics 
on cerebrospinal fluid (CSF) samples from sporadic ALS 
(sALS), C9orf72 ALS, C9orf72 asymptomatic carriers, 
SOD1 ALS, SOD1 asymptomatic carriers, and healthy 
controls. This analysis was carried out across two data-
sets using two complementary proteomic approaches, 
tandem mass tag spectrometry (TMT-MS) and data-
independent acquisition mass spectrometry (DIA-MS). 
Network modules that showed significant changes with 
ALS subtypes were linked to specific biological pro-
cesses, including modules associated with the extra-
cellular matrix and heparin binding, cytoskeleton and 
microglia, and ubiquitination and gluconeogenesis. Many 
of these protein changes differentiated symptomatic and 
asymptomatic carriers of disease-causing ALS mutations. 
Collectively our findings suggest that while sporadic 
and genetic forms of ALS display largely overlapping 
CSF proteomes, differences point to unique pathogenic 
pathways.

Materials and methods
Patient cohorts
An initial cohort of ALS spinal fluids was collected from 
a single center at Emory University in Atlanta, Georgia, 
USA. This cohort was made up of samples from C9orf72 
ALS (n = 10), C9orf72 asymptomatic carriers (n = 6), 
SOD1 ALS (n = 6), and sALS (n = 35), as well as age 
matched healthy controls (n = 44). Characteristics of the 
Emory cohort are summarized in Table 1 and detailed in 
Supplemental Table  1. An expanded multicenter cohort 
was organized adding samples provided by investigators 
at Massachusetts General Hospital (n = 84), Washing-
ton University in St. Louis (n = 26), and the University of 
Milan (n = 31), and included the initial Emory CSF cohort 
with an additional 17 samples. This expanded cohort 
included CSF from 259 individuals: C9orf72 ALS (n = 
43), C9orf72 asymptomatic carriers (n = 59), SOD1 ALS 
(n = 22), SOD1 asymptomatic carriers (n = 13), sALS (n = 
50), and age-matched controls (n = 72). Characteristics 
of the expanded cohort are summarized in Table  2 and 



Page 3 of 18Trautwig et al. Molecular Neurodegeneration           (2025) 20:58  

detailed in Supplemental Table 2. All CSF samples were 
collected as part of ongoing research protocols approved 
by the respective institutions with appropriate patient 
informed consent.

Protein digestion and Tandem Mass Tag (TMT) labeling 
of CSF
In order to sample the CSF in an unbiased manner and 
given that we have previously shown that immuno-
depletion resulted in only a marginal improvement in 
proteomic coverage, the CSF samples were not immuno-
depleted prior to digestion [12–14]. First, 50 μL of CSF 
was transferred to 1  mL deep well plates for digestion 
with lysyl endopeptidase (LysC) and trypsin. The samples 
were then reduced and alkylated with 1 μL of 0.5 M tris- 
2(-carboxyethyl)-phosphine (ThermoFisher) and 5 μL of 
0.4 M chloroacetamide in a 90 °C water bath for 10 min 
followed with 5  min bath sonication. After the sample 
was cooled on ice, 56 μL of 8 M urea buffer (8 M urea, 
10 mM Tris, 100 mM  NaH2PO4, pH 8.5) with 12.5 mAU 
of LysC (Wako), was added to each sample, resulting in a 
final urea concentration of 4 M.

Samples were then mixed well, gently spun down, and 
incubated overnight at 25 °C for digestion with LysC. The 
following day, samples were diluted to 1  M urea with a 
mixture of 360 μL of 50 mM ammonium bicarbonate [15] 
and 5  μg of Trypsin (ThermoFisher). The samples were 
subsequently incubated overnight at 25 °C for digestion 
with trypsin. The next day, the digested peptides were 
acidified to a final concentration of 1% formic acid and 
0.1% trifluoroacetic acid. This was immediately followed 
by desalting on 30 mg HLB columns (Waters) and then 
eluted with 1  mL of 50% acetonitrile (ACN) as previ-
ously described [16]. To normalize protein quantification 
across batches, 150 μl of elution was taken from all CSF 
samples and then combined to generate a pooled sample 
as previously described [16]. This pooled sample was split 
into 850 μL each as global internal standards (GIS) [17]. 
All individual samples and the GIS standards were then 
dried using a speed vacuum. Six TMT batches were bal-
anced for diagnosis, age, and sex using ARTS (automated 
randomization of multiple traits for study design) [18]. 
Using an 18-plex Tandem Mass Tag (TMT-pro) kit (Ther-
moFisher, Lot# UK297033 and WI336758), 17 channels 

Table 1 Characteristics of the Emory ALS cohort (i.e. Set 1)

Unabridged cohort traits are enumerated in Supplemental Table 1

Abbreviations F Female, M Male, AA African American, A Asian, C Caucasian, H/L Hispanic/Latino, B Bulbar, LE Lower Extremity, U Unknown, UE Upper Extremity, y Years, 
mo Months

“a”10/10 C9orf72 ALS deceased, 19/34 sALS deceased. 2/6 SOD1 ALS deceased, average not calculated

Control C9orf72 Asymptomatic C9orf72 ALS SOD1 ALS Sporadic ALS

Sample number (n) 44 6 10 6 35

Site onset - - 5 B, 3 LE, 2 UE 3 LE, 2 U, 1 UE 3 B, 17 LE, 15 UE

Sex 27 F, 17 M 2 F, 4 M 4 F, 6 M 2 F, 4 M 13 F, 22 M

Race 44 C 5 C, 1H/L 10 C 6 C 3 AA, 1 A, 31 C

Age at Onset (y)
(± SD)

- - 56.4 (± 8.9) 58.3 (± 4.7) 53.9 (± 11.5)

Age at Sample (y)
(± SD)

64.1 (± 7.6) 51.5 (± 18.5) 57.2 (± 8.7) 59.3 (± 4.6) 56.7 (± 10.9)

Duration of disease (mo)a 
(± SD)

- - 41 (± 26) - 38 (± 26)

Table 2 Characteristics of the Expanded ALS cohort (i.e. Multicenter cohort)

Unabridged cohort traits are enumerated in Supplemental Table 2

Abbreviations: E Emory University, I Universitá degli Studi di Milano, MGH Massachusetts General Hospital, W Washington University F Female, M Male, AA African 
American, A Asian, C Caucasian, H/L Hispanic/Latino, y Years, U Unknown

Control C9orf72 Asymptomatic C9orf72 ALS SOD1 Asymptomatic SOD1 ALS Sporadic ALS

Sample number (n) 72 59 43 13 22 50

Center 54 E, 18 MGH 6 E, 53 MGH 10 E, 18 I, 15 W 13 MGH 6 E, 13 I, 3 W 42 E, 8 W

Sex 41 F, 31 M 34 F, 25 M 20 F, 23 M 9 F, 4 M 7 F, 15 M 22 F, 28 M

Race 66 C, 4 AA, 2 A 58 C, 1H/L 10 C, 33 U 13 C 6 C, 16 U 1 A, 3 AA, 37 C, 9 U

Age at sample (y)
(± SD)

59.4 (± 12.5) 44.8 (± 12.8) 58.0 (± 7.0) 54.3 (± 12.0) 54.6 (± 12.2) 58.4 (± 10.8)
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were allocated for CSF samples with the remaining chan-
nel (126) containing a GIS pool, as described in [14].

High‑pH peptide fractionation
Dried samples were re-suspended in high pH loading 
buffer (0.07% vol/vol NH4OH, 0.045% vol/vol FA, 2% vol/
vol ACN) and loaded onto a Waters BEH column (2.1 
mm × 150 mm with 1.7 µm particles). A Vanquish UPLC 
system (ThermoFisher Scientific) was used to carry out 
the fractionation. Solvent A consisted of 0.0175% (vol/
vol) NH4OH, 0.01125% (vol/vol) FA, and 2% (vol/vol) 
ACN; solvent B consisted of 0.0175% (vol/vol)  NH4OH, 
0.01125% (vol/vol) FA, and 90% (vol/vol) ACN. The sam-
ple elution was performed over a 25 min gradient with 
a flow rate of 0.6 mL/min with a gradient from 0 to 50% 
solvent B. A total of 96 individual equal volume fractions 
were collected across the gradient. Fractions were con-
catenated to 96 fractions and dried to completeness using 
vacuum centrifugation.

Mass‑spectrometry analysis and data acquisition for TMT
All samples (~ 1  µg for each fraction) were loaded and 
eluted by an Ultimate 3000 RSLCnano (Thermo Scien-
tific) with an in-house packed 20 cm, 150 μm i.d. capil-
lary column with 1.7 μm CSH (Waters) over a 22 min 
gradient. Mass spectrometry was performed with a 
high-field asymmetric waveform ion mobility spectrom-
etry (FAIMS) Pro front-end equipped Orbitrap Eclipse 
(Thermo) in positive ion mode using data-dependent 
acquisition with 1.5 s top speed cycles for each FAIMS 
compensative voltage. Each cycle consisted of one full 
MS scan followed by as many MS/MS events that could 
fit within the given 1  s cycle time limit. MS scans were 
collected at a resolution of 120,000 (410–1600 m/z range, 
4 × 10^5 AGC, 50 ms maximum ion injection time, 
FAIMS compensative voltage of − 45 and − 65). Only 
precursors with charge states between 2 + and 6 + were 
selected for MS/MS. All higher energy collision-induced 
dissociation (HCD) MS/MS spectra were acquired at a 
resolution of 30,000 (0.7 m/z isolation width, 35% col-
lision energy, 1 × 10^5 AGC target, 54 ms maximum 
ion time, turboTMT on). Dynamic exclusion was set to 
exclude previously sequenced peaks for 20 s within a 
10-ppm isolation window.

Database search and protein quantification
Database searches and protein quantification was per-
formed on 576 RAW files (96 RAW files/fractions per 
batch) using FragPipe (version 19.1). The FragPipe pipe-
line relies on MSFragger (version 3.7) [19, 20] for pep-
tide identification, MSBooster [21], and Percolator 
[22] for FDR filtering and downstream processing. MS/
MS spectra were searched against all canonical Human 

proteins downloaded from Uniprot (20,402; accessed 
02/11/2019), as well as common contaminants (51 total), 
and all reverse sequences (20,453). The workflow we used 
in FragPipe followed default TMT- 18 plex (i.e., TMTpro) 
parameters. Briefly, precursor mass tolerance was − 20 to 
20 ppm, fragment mass tolerance of 20 ppm, mass cali-
bration and parameter optimization were selected, and 
isotope error was set to − 1/0/1/2/3. Enzyme specificity 
was set to strict-trypsin with up to two missing trypsin 
cleavages allowed. Cleavage was set to semi-tryptic, pep-
tide length was allowed to range from 7 to 35 and pep-
tide mass from 200 to 5,000 Da. Variable modifications 
that were allowed in our search included: oxidation on 
methionine, N-terminal acetylation on protein and pep-
tide, TMT labeling reagent modifications on serine, 
threonine, and histidine with a maximum of 3 variable 
modifications per peptide [23]. The false discovery rate 
(FDR) threshold was set to 1%. A total of 49,762 peptides 
which mapped to 2,568 proteins were detected. After 
filtering out proteins that were absent in 50% or more 
of specimens 23,743 peptides and 2,105 proteins were 
retained (Supplemental Tables 3 and 4).

DIA‑MS Proteomics
An expanded cohort incorporating four centers was 
included for the purpose of confirming findings from the 
original dataset and, as a secondary objective, to validate 
the initial analysis across an additional, unbiased data-
independent acquisition mass spectrometry (DIA-MS) 
approach. All samples (20 µL per sample) were digested 
(5 µg of peptides) as described above. Samples (1.6 µL) of 
digested CSF equivalent were then loaded and eluted by 
a Bruker timsTOF HT coupled with an Evosep One LC 
system. Data was acquired at 30 SPD with Performance 
Column (8 cm × 150 um × 1.5 um, part number EV1109). 
DIA with narrow mobility window 0.85–1.35 V  s cm 
− 2 (volts x seconds/square cm). Database searches and 
protein quantification was performed on 302 RAW files 
using Spectronaut (version 18.1;  [24]) and default, fully 
tryptic parameters (Supplemental Table 5). The database 
used for this search was identical to the TMT-MS search.

Bioinformatics processing and statistical analysis
We employed a Tunable Approach for Median Polish of 
Ratio (TAMPOR) on mode 3 for TMT-MS and mode 
4 for DIA-MS [25] and removal of peptides or proteins 
absent in 50% of cases or greater, as previously pub-
lished [14, 26, 27]. Multidimensional scaling was used to 
visualize distribution of post-TAMPOR data as a qual-
ity control (Supplemental Fig. 1). To ensure the reliabil-
ity of our data, we initiated the analysis by identifying 
and removing potential outliers, although none were 
present. We then performed parallelized [28] ordinary, 
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nonparametric, bootstrapping regression to remove vari-
ation due to age, sex, and batch effect on TMT-MS and 
age and sex on DIA-MS, which lacked batches, using 
an established pipeline [7, 27]. Fast parallel one-way 
ANOVA with Benjamini–Hochberg correction for mul-
tiple comparisons was conducted within each disease 
group using an in-house script (https:// github. com/ 
edamm er/ parAN OVA) to identify peptides and proteins 
that were differentially expressed (Supplemental Tables 6, 
7 and 8). Differential abundance is presented as volcano 
plots, which were generated with the ggplot2 package 
[29].

Protein network analysis
Weighted Gene Co-expression Network Analy-
sis (WGCNA) [30] was used to construct modules 
of co-expressing proteins as previously published [7, 
12]. Briefly, the blockwiseModules function from the 
WGCNA package in R was utilized with the following 
parameters for Emory ALS CSF samples: soft thresh-
old power beta = 4, deepSplit = 4, minimum module 
size = 15, merge cut height = 0.07, and a signed network 
with partitioning around medoids (mapping a distance 
matrix to k clusters, where K is data-adaptively selected; 
Supplemental Table  9) [31]. Module correlation to dis-
ease type was evaluated with biweight midcorrelation 
(BiCor) analysis by separating each disease control com-
bination. Fisher’s exact test (FET) was performed for 
each module’s members against the merged human brain 
cell type marker list to determine cell type enrichment 
using an in-house script (https:// github. com/ edamm 
er/ cellT ypeFET). Similarly, to determine module gene 
ontology (GO) a FET was performed for each module 
member against the Bader Lab’s GMT formatted ontol-
ogy lists from February 8, 2023 [32] (https:// github. com/ 
edamm er/ GOpar allel; Supplemental Table 10). One way 
ANOVA was conducted across all disease type groups for 
each module eigenprotein.

Assessment of module preservation between the 
Emory and the multi-center datasets was done using 
the modulePreservation function of WGCNA with 500 
permutations [7, 27, 33]. Synthetic module eigenpro-
teins (MEs) were calculated using the top 20 percent of 
hubs ranked by  kMEintramodule in the single center dataset 
used to build the template network, and a minimum of 4 
such hubs found in the expanded dataset (Supplemental 
Table 11). The first principal component of the selected 
proteins in the mapped dataset was calculated as the syn-
thetic ME in that data using the moduleEigengenes func-
tion of WGCNA R package as in [7, 27, 33].

In order to assess overlap of proteins by symptom 
status (i.e. sALS versus control, SOD1 versus control, 

C9orf72 versus control, etc.) we scattered compari-
sons and restricted proteins to those significantly dif-
ferent in both comparisons (p < 0.05). Effect sizes were 
scattered for each symptom status and the bicor And P 
value function of the WGCNA R package was used to 
assess correlation and significance. The most differen-
tially abundant (top 12) proteins between ALS and con-
trol as well as symptomatic versus asymptomatic were 
determined using ANOVA. These proteins were used 
in each case to perform a principal component analysis 
and hierarchical clustering. In both cases these analy-
ses separated the samples by symptom status. Finally, 
we connected all differentially abundant proteins across 
ALS versus control and symptomatic versus asympto-
matic to the module network structure.

Results
Experimental workflow identifies differentially expressed 
proteins across ALS subtypes
Using the single center Emory CSF cohort, we com-
pared CSF proteomes from sALS (n = 35), C9orf72 
ALS (n = 10), C9orf72 asymptomatic carriers (n = 6), 
SOD1 ALS (n = 6), and healthy controls (n = 44) with 
the goals of discovering differences between ALS and 
control, and protein signatures that may differenti-
ate the ALS subtypes (Fig.  1a). TMT-MS proteomic 
analysis represented 2,105 proteins with more than 50 
percent of all samples having quantification. Protein 
abundance was adjusted for batch, age, and sex [12, 14]. 
As expected, protein levels of neurofilaments (NEFM 
and NEFL) were increased in both sporadic and genetic 
ALS subtypes compared to controls, consistent with 
neurodegeneration [34–36]. Furthermore, we observed 
an increase in chitinases, CHIT1 and CHI3L1, linked to 
inflammation and previously shown to increase in ALS 
[37, 38].

Comparison of the CSF proteome between sporadic 
ALS and controls, as well as C9orf72 ALS and controls, 
revealed many shared differentially abundant proteins 
(DAPs) between the ALS subtypes. (Figs.  1b and 1c; 
Supplemental Fig.  2; Supplemental Table  6). However, 
proteins with relative increased abundance in C9orf72 
ALS compared to sALS (such as NEFL, NEFM, IGHM, 
and ADH1B) included those with axonal regeneration 
ontology as well as proteins with metabolic pathways 
associated with L-ascorbic acid, cellular ketone, and 
cellular aldehyde. Proteins including HIST1H2 AB, 
HIST1H1B, HIST1H1E, HIST1H4 A, H2 AFZ, and 
HIST2H2BF as well as those related to chemical synap-
tic transmission and assembly of postsynaptic elements 
in C9orf72 ALS CSF were significantly decreased in 
abundance relative to sALS.

https://github.com/edammer/parANOVA
https://github.com/edammer/parANOVA
https://github.com/edammer/cellTypeFET
https://github.com/edammer/cellTypeFET
https://github.com/edammer/GOparallel
https://github.com/edammer/GOparallel
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Network analysis of the ALS CSF proteome reveals 
modules related to brain pathways, brain cell‑types 
and genetic background
We utilized Weighted Gene Co-expression Network 
Analysis (WGCNA) [30] to identify modules or ‘commu-
nities’ of proteins that are highly correlated across CSF 
samples. These modules in CSF reflect various biological 
functions linked to brain cell types and ontologies [13, 
14]. Using the first principal component of all proteins in 
a module, or the module eigenprotein, we can relate the 
abundance of each module to disease phenotypes with 
greatly reduced reliance on multiple testing.

Here, our network modules ranged from 476 (M1) to 29 
(M12) member proteins with 81% of proteins mapping to 

a module. The 12 network modules were generally divided 
into three branches of relatedness, allowing us to infer 
which modules were most similar to each other (Fig. 2a). 
We compared correlation between specific disease groups 
and network module co-expression to determine that 
five modules were associated with C9orf72, three with 
SOD1, and two with sALS, with overlap in module iden-
tity (Fig. 2b). We also evaluated whether proteins associ-
ated with specific brain cell types were enriched in certain 
modules [14], potentially indicating relative changes in 
CNS cell type abundance or activity caused by disease. 
Three modules showed significant enrichment for neu-
ronal markers (M1, M4, and M12) and microglial mark-
ers (M7, M8, and M9). Additionally, two modules were 

Fig. 1 Experimental workflow with differential expression of ALS versus control CSF proteomes using TMT-MS. a. Schematic of experimental 
workflow to examine proteomic differences in cerebrospinal fluid (CSF) between subjects with ALS and controls. b-c. Volcano plots showing 
differential abundance profiles comparing control CSF (n = 44) to that from sALS (n = 35) and C9orf72 ALS (n = 10).  Log2 fold change (x-axis) 
and one-way ANOVA with Benjamini–Hochberg corrected by disease -log10 p-values (y-axis). Note the commonly increased CSF proteins 
in patients with ALS such as NEFL, NEFM, and CHIT1. Proteins significantly (p < 0.05) increased in abundance are depicted in red, significantly 
decreased in blue, and neither in grey
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enriched for oligodendrocyte markers (M1 and M4), 
and one module was enriched for endothelial markers 
(M2; Fig. 2c). Modules showing a high degree of correla-
tion did not necessarily have more overlap with protein 
markers of cell type. Specifically, M1 and M4 were sig-
nificantly enriched with neuronal and oligodendrocyte 
associated proteins but were more closely correlated to 
modules nine and 12; respectively (Fig. 2c). The three larg-
est modules corresponded to M1- Neuronal, M2-Com-
plement activation, enriched with markers specific to 
endothelia, and M3-Adaptive immune response ontolo-
gies (Fig.  2d). Smaller modules were associated with 
M4-Neuron development, M5-Extracellular matrix/Hep-
arin binding, M6-Lysosomal/Vesicle, M7-Cytoskeleton/
Microglial, M8-Inflammatory Response, M9-Lysosome, 

M10-Ubiquitination/Gluconeogenesis, M11-Postsynaptic 
membrane/Signaling, and M12-Nervous system develop-
ment (Fig. 2d; Supplemental Table 10).

Modules associated with M5-Extracellular matrix/
Heparin binding (p = 0.0084), M7-Cytoskeleton/Micro-
glia (p = 0.025), and M10-Ubiquitination/Gluconeo-
genesis (p = 2.4e- 07) varied significantly among control 
and ALS groups (Fig.  3a). To reinforce these findings, 
most of the increased DAPs in ALS cases irrespective 
of genetic cause mapped to M5, M7 and M10, whereas 
decreased DAPs in ALS were distributed in M4, M11, 
and M12 (Fig.  3b). DAPs in C9orf72 patients increased 
in abundance also contributed to these modules, with 
lowered abundance proteins belonging to modules asso-
ciated with M4-Neuron development and M12-Nervous 

Fig. 2 CSF Network modules associate with brain cell-types and ALS disease subtypes. a. Cluster dendrogram indicates similarity of WGCNA 
network modules based on correlation of eigenproteins (i.e., first principal component). b. Relationship between ALS disease subgroup (sporadic, 
SOD1, Asymptomatic C9orf72 and symptomatic C9orf72) with individual protein modules was evaluated by cross referencing trait values 
and module proteins using a Biweight midcorrelation (BiCor) analysis. Significance as determined by BiCor are denoted by overlain asterisks; *p < 
0.05, **p < 0.01, ***p < 0.001. Note the relatedness of modules 7 and 10 as well as the overlap in significance between these modules by disease 
subtype compared to control group. c. Cell-type enrichment was characterized by comparing module proteins with a list of proteins known 
to be enriched in astrocytes, microglia, neurons, oligodendrocytes, and endothelia; respectively (see methods). Significance levels determined 
by one-tailed Fisher’s exact test are denoted by overlain asterisks; *p < 0.05, **p < 0.01, ***p < 0.001. d. Top gene ontology (GO) terms were selected 
from significant GO annotations (Supplemental Table 10)
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system development. Proteins increased in abundance 
in asymptomatic C9orf72 cases were more commonly 
clustered into the module associated with M5-Extra-
cellular matrix/Heparin binding and proteins that were 
significantly increased in symptomatic C9orf72 relative 
to sporadic cases, including neurofilaments, chitinases, 
and deubiquitinases belonging to the module associated 
with M10-Ubiquitination/Gluconeogenesis (Fig.  3b). 
Module overarching ontologies and correlation helped 
identify broad protein functions more closely associated 
with C9orf72 (M5-Extracellular matrix/Heparin binding) 
as well as the degree to which these functions overlapped 
(i.e. all ALS subgroups correlated to M7-Cytoskeleton/
Microglial and M10-Ubiquitination/Gluconeogenesis). 
Overall, network analysis effectively organizes the CSF 
proteome into protein modules that are strongly linked 
to hallmark ALS and neurodegenerative biomarkers.

Validation of CSF protein abundance changes 
in an expanded multicenter cohort
To assess the consistency of our findings from the Emory 
CSF cohort, we analyzed a separate dataset of CSF sam-
ples using unbiased label free data-independent acqui-
sition mass spectrometry (DIA-MS). This analysis was 
conducted across four independent centers, adding 158 
individuals unique to the study. We compared the Emory 
CSF proteome to the expanded multicenter proteome 
(Fig.  4a) at both the individual protein and network 
module level. Of the 2,105 and 2,330 proteins identi-
fied by TMT-MS from the Emory and DIA-MS from 
the expanded cohort, respectively, 81.8 and 73.9% of 
those proteins were shared. The Emory TMT-MS data-
set included 384 proteins not found in the expanded 
proteome whereas the DIA-MS dataset included 609 
proteins not found in Emory. However, comparing 
the shared DAPs between common individuals in the 
C9orf72 ALS vs. control comparison of the two datasets 
we found a high degree of correlation (bicor = 0.948, p = 
1.381e- 59). For this comparison, 117 DAPs coincided in 
direction of change, while only 1 DAP protein differed 
(Fig.  4b). Note, that neurofilament proteins are poorly 
characterized in DIA-MS as compared to TMT-MS [39], 
and so the effect size of neurofilament in the DIA-MS 
analysis is blunted.

To assess module preservation across the Emory and 
Multicenter ALS cohorts, we constructed a protein co-
expression adjacency matrix for the DIA-MS ALS cohort 
and evaluated the preservation of TMT-derived Emory 
network modules in the multicenter dataset. Nota-
bly, modules M1-Neuron, M2-Complement activation, 
M4-Neuron development, M5-Extracellular matrix/
Heparin binding, and M12-Nervous system development 
had  Zsummary values exceeding 10 (q = 1 ×  10–23), indicat-
ing strong preservation. Modules M3-Adaptive immune 
response, M6-Lysosomal/Vesicle, M7-Cytoskeleton/
Microglia, M8-Inflammatory response, M9-Lysosome, 
M10-Ubiquitination/Gluconeogenesis, and M11-Post-
synaptic membrane/signaling showed  Zsummary values 
between 2 (q = 0.05) and 10, reflecting moderate to high 
preservation (Fig. 4c).

To evaluate module directionality across disease sub-
groups between the two cohorts, we compared mod-
ule eigenproteins from the Emory cohort with the 
same"synthetic"eigenproteins from the multicenter 
cohort generated as described [27]. Ten of the 12 mod-
ules showed concordant changes, while M6-Lysosomal/
Vesicle and M9-Lysosome exhibited a slight increase in 
the Emory cohort but a decrease in the expanded dataset 
(Fig. 4d), yet these modules were not different by disease 
in either the Emory or multi-center cohort. Importantly, 
all synthetic module eigenproteins corresponding to 
differentially abundant modules in the Emory dataset 
(M5-Extracellular matrix/Heparin binding, M7-Cytoskel-
eton/Microglial, and M10-Ubiquitination/Gluconeogen-
esis) were also differentially abundant in the expanded 
multicenter dataset. Additionally, six other modules 
showed differences across symptom status, likely due to 
the increased statistical power of the larger multi-center 
cohort (Fig. 5).

The direction of the modules across ALS subtypes 
stratified by the presence or absence of C9orf72 or 
SOD1 mutation in the DIA-MS was highly consist-
ent to that of the TMT-MS datasets (Fig. 5a). All ALS 
cases were correlated to two modules, one positive 
(M10) and one negative (M11). While genetic subtypes 
(SOD1 and C9orf72) were also positively correlated to 
an additional module (M7). The directionally of module 
change was mainly consistent between asymptomatic 

(See figure on next page.)
Fig. 3 CSF Network Modules representing diverse biology vary across ALS subgroups. a. Eigenproteins for each of the CSF proteome modules (n = 
12) were compared across control and ALS disease sub-type by one-way ANOVA. Hub proteins and GO terms for each module are highlighted. 
b. Differentially abundant proteins from each subgroup compared to controls for C9 ALS, Sporadic ALS and C9 Asymptomatic were mapped 
by module. Symptomatic vs asymptomatic C9orf72 differences were also included. The height of the bars represents the fraction of module 
member proteins that were differentially abundant. The bars are color coded by heatmap for average  log2 difference in abundance, where red 
represents an increase in abundance, and blue represents a decrease in abundance
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Fig. 3 (See legend on previous page.)
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and symptomatic ALS cases. Interestingly, M10, the 
module most increased across all symptomatic ALS 
cases was decreased in asymptomatic SOD1 carriers, 
but increased in asymptomatic C9orf72 carriers, sug-
gesting the trajectory of these proteins changes differs 
by genetic subtype (Fig. 5b; Supplemental Fig. 3). Thus, 
the validation of CSF protein abundance changes in an 
expanded multicenter ALS cohort demonstrates strong 

reproducibility of findings from the Emory dataset. 
Despite differences in mass spectrometry platforms 
(TMT-MS vs. DIA-MS) and sample sources (single-
site vs. multi-site), there was substantial overlap in 
identified proteins, a high correlation in differentially 
abundant proteins (DAPs), and strong preservation of 
protein co-expression network modules.

Fig. 4 ALS CSF protein network changes are preserved in a larger multicenter cohort. a. Schematic of experimental workflow to quantitatively 
evaluate an additional CSF proteome generated DIA-MS (multicenter dataset), indicating sample size and number of proteins quantified. Note 
the addition of an asymptomatic SOD1-mutation group. b. Scatter plot showing the overlap in effect size in the subset of individuals included 
in both TMT-MS and DIA-MS (N = 50, C9orf72 = 10, Control = 40). Proteins that varied significantly in both sets were compared using BiCor 
and associated Student correlation p-value. The number of proteins in each quadrant is denoted by “n”. c. Module preservation of TMT-MS (original 
dataset) and DIA-MS (expanded dataset). Number of proteins in each module (x-axis) is compared across Zsummary and overall measurement 
of preservation, (y-axis). The red line at Zsummary = 10 (q = 1 ×  10–23) indicates TMT-MS modules are highly preserved in the replication proteome. 
The blue line at Zsummary = 2 (q = 0.05) indicates TMT-MS modules are preserved in the DIA-MS dataset. d. Scatter plot correlating module 
eigenproteins for C9orf72 vs. control for TMT-MS (y-axis) and DIA-MS (x-axis). 10 of 12 network modules correlate between the two methods. 
Synthetic eigenproteins were constructed for DIA-MS dataset and measured by disease type in TMT-MS datasets. A minimum of four proteins 
from the top 20% of module membership by kME (correlation to module eigenprotein) were used to assess synthetic eigenprotein value (y-axis) 
and compared across disease type (x-axis) (Supplemental Table 11)
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Differentially Abundant Proteins in symptomatic 
and asymptomatic gene mutation carriers
The expanded multi-center cohort provided greater 
statistical power to compare different ALS subtypes 
with controls and asymptomatic gene carriers. These 
comparisons identified DAPs and highlighted simi-
larities and differences across ALS subtypes. In the 

comparison of C9orf72 asymptomatic carriers to con-
trols, 383 DAPs were identified, with 205 increased 
and 178 decreased (Supplemental Fig.  3a). The histone 
protein HIST1H4 A was significantly decreased while 
LDHA, SNCB, CXCL12, and FABP5 were among those 
increased in abundance. DAPs in asymptomatic C9 carri-
ers that showed an increase in abundance, predominantly 

Fig. 5 Synthetic eigenproteins indicate variation between different forms of ALS, relative to controls. a. Relationship between symptom status 
(asymptomatic C9orf72, asymptomatic SOD1, C9orf72 ALS, SOD1 ALS, sporadic ALS) modules was evaluated by cross referenced trait values 
with module proteins using a Biweight midcorrelation (BiCor) analysis. Significance as determined by BiCor are denoted by overlain asterisks; *p < 
0.05, **p < 0.01, ***p < 0.001. b. Synthetic eigenproteins for each of the CSF proteome modules (n = 12) were compared across control and ALS 
disease sub-type by one-way ANOVA
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clustering in M5 (Extracellular Matrix/Heparin Binding) 
and M8 (Inflammatory Response). In contrast, DAPs that 
decreased in abundance were more evenly distributed 
but were primarily associated with functionally related 
modules, including M1 (Neuronal), M4 (Neuron Devel-
opment), M11 (Postsynaptic Membrane/Signaling), and 
M12 (Nervous System Development). (Supplemental 
Fig. 3a). In asymptomatic SOD1 relative to controls, 394 
DAPs were present (183 increased and 211 decreased; 
Supplemental Fig. 3b). As in asymptomatic C9orf72 car-
riers, the histone protein HIST1H4 A was reduced, along 
with the addition of HIST1H2 AB. Notably, both SOD1 
and SOD2 were also reduced, mirroring the changes 
observed in the asymptomatic SOD1 group compared 
to controls. DAPs increased in abundance were most 
consistently nested in M5, while decreased abundance 
DAPs were associated disproportionately with M11, M9 
(Lysosomal), and M12 (Supplemental Fig.  3b). A direct 
comparison showed more DAPs were unique to each 
asymptomatic condition than were shared (Supplemental 
Fig. 3c).

To identify shared and distinct differences between 
asymptomatic and symptomatic disease that may be 
linked to disease progression across SOD1 and C9orf72 
ALS subtypes, we directly compared asymptomatic car-
riers to symptomatic carriers within each subgroup. 
In individuals with the C9orf72 mutation, 901 DAPs 
were detected (416 increased, 485 decreased; Fig.  6a). 
Notably, CHIT1, CHI3L1, CHI3L2, UCHL1, GFAP, and 
NEFL were elevated, likely reflecting neuroinflamma-
tion and degeneration associated with disease onset. 
DAPs increased in abundance were strongly associated 
with related modules M7 (Cytoskeleton/Microglial) and 
M10 (Ubiquitination/Gluconeogenesis) as well as M2 
(Complement Activation) and M3 (Adaptive Immune 
Response). Decreased DAPs were in M1, M4, M11, and 
M12, similar to asymptomatic C9orf72 versus control, 
but more consistently (Fig. 6a).

For SOD1 mutation carriers, 405 DAPs were identi-
fied between asymptomatic and symptomatic individu-
als (206 increased, 199 decreased; Fig.  6b). Similar to 
C9orf72 carriers, UCHL1, CHIT1, and GFAP as were 
most proteins in M10 and M7 (Cytoskeleton/Micro-
glial). DAPs mapping to M7 and M10 were consistently 
increased in both C9orf72 and SOD1 ALS cases com-
pared to genotype specific asymptomatic controls indi-
cating that these are share pathways and biomarkers 
across these familial forms of ALS. In contrast, while 
modules M1, M4, M11, and M12 were predominantly 
decreased in C9orf72 ALS, proteins mapping to these 
modules in SOD1 ALS showed a moderate increase. 
This suggests a more significant reduction of synaptic 
biomarkers in C9orf72 ALS compared to SOD1 ALS, 

which may be due to distinct differences in underly-
ing pathology of these diseases. Notably, M5-Extracel-
lular matrix/Heparin binding and M8 (Inflammatory 
response) had a higher proportion of decreased DAPs 
in SOD1 compared to C9orf72 highlighting other diver-
gent modules between the genetic subtypes (Fig. 6).

The inclusion of additional SOD1 cases in the 
expanded cohort enabled a more robust analysis of 
DAPs in symptomatic and asymptomatic SOD1 muta-
tion carriers, as well as comparisons across different 
SOD1 mutations. In the comparison of SOD1 ALS vs. 
controls, 456 DAPs were identified, with 186 proteins 
increased and 270 decreased (Supplemental Fig.  4a). 
DAPs that were increased were associated with M7 
and M10, which is shared with symptomatic relative to 
asymptomatic SOD1. DAPs that were mixed (including 
increased and decreased) were distributed among M2, 
M3, M5, and M8. While M1, M4, M11, M12, M9, and 
M6 (Lysosomal/Vesicle) contained largely decreased 
abundance proteins. M11, in particular, was consist-
ently populated with decreased DAPs.

Notably, SOD1 protein levels were reduced in both 
symptomatic SOD1 ALS and asymptomatic SOD1 car-
riers compared to controls (Supplemental Fig. 3b; Sup-
plemental Fig.  4a). Further analysis revealed that this 
reduction was primarily driven by carriers of the A5 
V and A5 T mutations (Supplemental Fig.  4b), which 
are known to be among the most clinically aggressive 
SOD1 mutations [40]. Several mutations in the cohort 
were captured by peptides quantified in the dataset 
(Supplemental Fig.  4c), showing a consistent reduc-
tion in canonical SOD1 protein levels (Supplemental 
Fig.  4d). In these peptides, A5-mutants consistently 
exhibited the lowest SOD1 levels. In summary, the 
expanded multi-cohort CSF dataset improved statisti-
cal power, allowing for a detailed comparison of ALS 
subtypes with controls and asymptomatic gene carriers. 
Key findings included significant changes in differen-
tially abundant proteins associated with neuroinflam-
mation, degeneration, and metabolic pathways, with 
notable reductions in SOD1 protein levels in the most 
aggressive SOD1 mutations.

Individual biomarkers can distinguish ALS versus control 
and symptomatic versus asymptomatic
To assess the ability of top differentially abundant pro-
teins to stratify ALS subtypes, we applied principal com-
ponent analysis (PCA) and hierarchical clustering to 
visualize relationships among individual CSF proteomes. 
Two methods were used to evaluate the robustness of 
these CSF panels in sample classification.

Using the 12 most differentially abundant proteins 
(CHI3L1, TMEM198, CHIT1, CHI3L2, HYOU1, XXYLT1, 
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Fig. 6 Asymptomatic individuals were distinct from symptomatic individuals with these differences indicating novel biology. a. Volcano plot 
showing differential abundance profiles comparing asymptomatic C9orf72 carriers (n = 59) and symptomatic C9orf72 carriers (n = 43). Differentially 
abundant proteins were mapped by module. The height of the bars represents the fraction of module member proteins that were differentially 
abundant. The bars are color coded by heatmap for average  log2 difference in abundance, where red represents an increase in abundance, and blue 
represents a decrease in abundance. b Asymptomatic SOD1 (n = 13) compared to symptomatic SOD1 carriers (n = 22). Differentially abundant 
proteins were also mapped by module.  Log2 fold change (x-axis) and one-way ANOVA with Benjamini–Hochberg corrected by disease -log10 
p-values (y-axis). Proteins significantly (p < 0.05) increased in abundance are depicted in red, significantly decreased in blue, and neither in grey. c. 
Representative modules of groups outlined above stacked barplots are depicted restricted to subtypes depicted in volcano plots
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DPP6, C1QB, FABP5, MERTK, UCHL1, and WARS), 
PCA effectively distinguished ALS from controls (Fig. 7a). 
While some overlap was observed among individual sam-
ples across ALS subtypes, ALS samples remained clearly 
separated from controls with sporadic ALS samples being 
the most heterogenous. Hierarchical clustering confirmed 
this trend, forming distinct ALS-enriched and control-
enriched groups. While some of the most differentially 
abundant proteins were known ALS biomarkers (includ-
ing CHIT1, CHI3L1, CHI3L2, FABP5, and UCHL1) [36, 
37, 41], novel putative biomarkers were also identified 
(TMEM198, DPP6, C1QB, MERTK, WARS) as well as two 
ER related proteins (HYOU1 and XXYLT1).

Similarly, PCA using most the 12 most differentially 
abundant proteins (C2 CD5, CHI3L1, CHIT1, SLC39 
A10, XXYLT1, TGFBR3, SORCS3, HYOU1, MINPP1, 
CHI3L2, SERPINA3, and PCDH11X) effectively distin-
guished asymptomatic from symptomatic ALS individuals 
(Fig. 7b). Moreover, unbiased hierarchical clustering iden-
tified distinct symptomatic- and asymptomatic-enriched 
groups. As with the analysis comparing ALS to controls 
novel putative markers were present including C2 CD5, 
SLC39 A10, TGFBR3, SORCS3, MINPP1, SERPINA2, 
and PCDH11X as well as the two ER related proteins in 
the prior analysis. Additionally, differentially abundant 
proteins in these comparisons showed overlapping mod-
ule memberships, indicating shared biological pathways 
(Fig.  6). In summary, differentially abundant proteins 
stratify ALS subtypes, distinguishing cases from controls 
and symptomatic from asymptomatic individuals, reveal-
ing both known and novel biomarkers with shared biolog-
ical pathways aligning with the CSF network.

Discussion
In this study, we characterized the CSF proteome of sub-
types of ALS defined by genetic status and clinical diag-
nosis to identify shared and unique biomarkers across 
each ALS subgroup. By examining coordinated protein 
co-expression across genetic and sporadic forms of ALS, 
we identified shared and group-specific changes linked to 
gene ontologies and cell-type functions in the proteome. 
We compared sALS, C9orf72 ALS and asymptomatic 
expansion mutation carriers, SOD1 ALS and asympto-
matic SOD1 mutation carriers, and healthy controls to 
identify biomarkers that distinguish ALS from control, 
and asymptomatic from symptomatic gene carriers. Our 
analysis validated previously identified ALS associated 
CSF biomarkers [37, 41–43] but importantly, identified 
novel ALS biomarkers specific to genetic status as well as 
those that differentiate symptomatic from asymptomatic 
mutation carriers.

Our approach was to initially interrogate the Emory 
cohort given that the pre-analytical variables are best 

controlled when one site is considered. Using a uniformly 
sampled, single center Emory dataset, we recapitulated 
the expected result demonstrating that both C9orf72 and 
sALS proteomes vary from controls. While several of the 
most differentially variable proteins were shared across 
disease subtypes, distinct protein signatures were also 
observed for each subtype. Network modules captured 
diverse biology that further emphasize the differences in 
symptom status (i.e. asymptomatic vs. disease), and dif-
ferences from control and from each other, particularly 
as it relates to M5-Extracellular matrix/Heparin binding, 
M7-Cytoskeleton/Microglia, and M10-Ubiquitination/
Gluconeogenesis. Hub proteins for these modules repre-
sent novel biomarkers and potential interventional tar-
gets. The M5 and M10 network modules and their hub 
proteins similarly differentiate C9orf72 ALS from asymp-
tomatic mutation carriers (see Fig.  3), suggesting these 
may reflect more generalized biomarkers of active disease.

An expanded, multicenter cohort was then assem-
bled to validate the generalizability and robustness of the 
trends identified in the initial single-center dataset. At 
the individual protein and module level, a high degree of 
overlap in direction and magnitude was observed. Greater 
overlap in proteins increased in abundance relative to 
controls were observed in asymptomatic carriers—with 
the exception of some histone proteins. Similarly, in addi-
tion to known neurodegeneration biomarkers, numer-
ous novel proteins were differentially abundant between 
symptomatic and asymptomatic carriers.

Using the most DAPs across ALS versus control, 
and symptomatic versus asymptomatic, we performed 
PCA analyses to plot all individuals in two dimensions. 
These two principal components separated all ALS 
groups from controls and even ALS groups from each 
other. This indicates that while the clinical presenta-
tions of ALS groups are largely indistinguishable, CSF 
proteomics suggests that pathobiology differs across 
those with sporadic versus genetic disease, as well as 
those with different disease-causing mutations. We also 
performed hierarchical clustering and characterized 
an ALS-enriched group and a control enriched group. 
Similarly, symptomatic and asymptomatic groups sepa-
rated into distinct populations, with notable overlap 
between SOD1 ALS and sALS despite their differences 
in genetic underpinnings and pathological hallmarks. 
Across both analyses five proteins were shared includ-
ing the chitinases (CHIT1, CHI3L1, and CHI3L2) and 
two ER related proteins (HYOU1 and XXYLT1). As 
recently reported [39] we saw a difference between 
UCHL1 in the ALS versus control comparison, and it 
is notable that a variant in DPP6 has been identified 
as a risk factor for ALS [44]. These two groups of pro-
teins may prove useful as predictive biomarkers and in 
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Fig. 7 Comparisons of disease subtypes based on the most differentially expressed proteins. a. Principal component analysis of the top 12 
differentially abundant proteins across all ALS and control individuals (N = 187). Individual points are transparent with centroids and standard error 
identified with crosses. Percent variation by principal component is presented on respective axes. Heatmap of normalized abundance for each 
of the 12 most variable proteins between all ALS and control, accompanied by hierarchical clustering of individuals and proteins. The heatmap 
separates control enriched (mostly blue) and ALS enriched (mostly red) classes. Proteins that varied most across ALS and control individuals are 
identified along the bottom of the heatmap. b. Principal component analysis depicting most variable proteins across all cases, both symptomatic 
and asymptomatic (N = 187). Individual points are transparent with centroids and standard error identified as crosses. Percent variation by principal 
component is presented on respective axes. Heatmap of normalized abundance for each of the 12 most variable proteins between symptomatic 
and asymptomatic individuals, accompanied by hierarchical clustering of individuals and proteins. The heatmap separates a symptomatic-enriched 
class (red and green) from an asymptomatic-enriched class (pink and pale purple). Proteins that varied most across symptomatic and asymptomatic 
individuals are identified along the bottom of the heatmap
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adding granularity of when individuals are responding 
to therapeutics.

An important result of this analysis is that both asymp-
tomatic C9orf72 and SOD1 grouped together, separat-
ing proteomic signatures of asymptomatic gene carriers 
from symptomatic cases. Examples of differentially abun-
dant proteins common to asymptomatic gene carriers 
are CXCL10, CXCL12, ELN, GAL3ST4, and PHGDH (all 
increased) and HIST1H4 A, PCDHB11, C2 CD5, GRHL2, 
and IL6R (all decreased). These similarities between 
asymptomatic gene carriers, with the notable exception of 
module 10, point to proteins that are potential biomarkers 
for transition from asymptomatic carrier to symptomatic 
disease. Although this will need to be tested in future lon-
gitudinal studies where pre and post symptomatic sam-
ples are available, it is crucial to identify biomarkers of 
conversion early to improve patient outcomes.

The characterization of asymptomatic carriers as well 
as the unprecedented number of SOD1-mutation car-
riers (n = 35, 22 SOD1 ALS, 13 asymptomatic carriers) 
differentiate this study from previous CSF biomarker 
studies [37, 41–43]. The increased number of SOD1 car-
riers in this expanded cohort allowed us to examine pro-
teomic differences among the various SOD1 mutations. 
Interestingly, we found that, in general, people carrying 
SOD1 mutations had lower abundance of CSF SOD1 
protein compared to control and to other ALS subsets. 
This was particularly evident for those with either the 
A5 T or A5 V variants, both symptomatic and asympto-
matic, which are known to be associated with aggressive 
clinical phenotypes [40]. At the peptide level, these find-
ings are largely recapitulated. A recent study [45] found 
that mutant SOD1 was 16-fold lower in concentration 
in CSF than wildtype SOD1 and that the turnover of 
mutant SOD1 was two times faster [45]. In conjunction 
with the finding that Tofersen lowered SOD1 by 30% 
[46], these results demonstrate the need to better under-
stand how these concentrations are allocated amongst 
the myriad known SOD1 mutations and peptides.

Conclusion
Our investigation presents the most extensive ALS-associ-
ated CSF proteome to date and identifies protein biomark-
ers that may distinguish the transition from asymptomatic 
to symptomatic phase, as well as proteomic differences 
separating genetic and sporadic forms that indicate dif-
ferences in mechanisms of disease. We validated these 
biomarkers using two unbiased MS approaches across 
259 individuals from four centers. Future analyses should 
utilize these differences to determine their applicability 
to diverse ALS cohorts, identify how these biomarkers 
develop longitudinally, and in additional tissue including 
spinal cord and motor cortex.
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Supplementary Material 1.

Supplementary Material 2. Supplemental Fig. 1. a. Multidimensional 
scaling was used on raw data that had been log-transformed to visualize 
multidimensional proteomic distribution in two-dimensional space. b. 
Post-TAMPOR mode 3 distribution of TMT-MS data removes batch-level 
effect present in raw data. c. Post-regression TMT-MS data indicate that 
distribution is not affected by methodological artifacts. d. Raw DIA-MS 
data processed with log-transformation demonstrate the difference in 
unprocessed DIA and TMT-MS. e. Post-TAMPOR mode 4 distribution of 
individual points show a reduction in any clustering that may be due to 
DIA-MS. f. Post-regression distribution is further removed of methodical 
influence. Panels a-c demonstrate distribution of TMT-MS proteome and 
panels and d-f demonstrate distribution of DIA-MS. Each datapoint repre-
sents an individual tissue sample with colors indicating, in TMT-MS, shared 
batch and, in DIA-MS, shared center of origin. 

Supplemental Fig. 2. a. Shared and diverging differentially abundant pro-
teins from single center TMT-MS quantification were compared between 
sporadic ALS and C9orf72 ALS. This scatterplot includes cases from the 
Emory single center dataset. Only proteins that were differentially abun-
dant in both ALS subtypes are visualized. The number of proteins in each 
quadrant is denoted by “n”. b. Volcano plot showing differential abundance 
profiles comparing asymptomatic C9orf72 ALS (n = 10) and sporadic 
ALS (n = 35). Proteins that were significantly (p ≤ 0.05) down in disease 
(C9orf72 ALS, relative to control) are depicted in blue (n = 151), proteins 
that were significantly up are depicted in red (n = 139), and proteins that 
were neither significantly up nor down are grey. 

Supplemental Fig. 3. a. Volcano plot showing differential abundance pro-
files comparing asymptomatic C9orf72 carriers (n = 59) and controls (n = 
72). Differentially abundant proteins were mapped by module. The height 
of the bars represents the fraction of module member proteins that were 
differentially abundant. The bars are color coded by heatmap for average 
 log2 difference in abundance, where red represents an increase in abun-
dance, and blue represents a decrease in abundance. b Asymptomatic 
SOD1 (n = 13) compared to controls. Differentially abundant proteins were 
also mapped by module.  Log2 fold change (x-axis) and one-way ANOVA 
with Benjamini–Hochberg corrected by disease -log10 p-values (y-axis). 
Proteins significantly (p < 0.05) increased in abundance are depicted in 
red, significantly decreased in blue, and neither in grey. c. Differentially 
abundant proteins from asymptomatic C9orf72 HRE versus control were 
compared to asymptomatic SOD1 mutation carriers in a Venn diagram. 
Most robustly increased and decreased proteins are shown in red and 
blue boxes; respectively. 

Supplemental Fig. 4. a. Volcano plot representing differential protein abun-
dance comparing SOD1 ALS (n = 22) versus control (n = 72).  Log2 fold 
change (x-axis) and one-way ANOVA with Benjamini–Hochberg corrected 
by disease -log10 p-values (y-axis) are shown for each protein (n = 2,330). 
Proteins that were significantly (p ≤ 0.05) down in disease (SOD1 ALS, 
relative to control) are depicted in blue (n = 270), proteins that were sig-
nificantly up are depicted in red (n = 186), and proteins that were neither 
significantly up nor down are grey. b. SOD1 protein abundance compared 
among all individuals without an SOD1 mutation, those with either 
 SOD1A5 V or  SOD1A5 T (including both symptomatic and asymptomatic 
carriers), and all other SOD1 mutation carriers including asymptomatic 
and symptomatic carriers. One-way ANOVA was used to determine if a 
difference was present between the SOD1-mutation groups. Note SOD1 
protein is significantly reduced in those with a point mutation at posi-
tion 5. c. SOD1 specific-peptide level quantification across controls and 
disease subgroups. Peptides were visualized for overlap of the canonical 
SOD1 protein sequence (P00441). Individual mutations are depicted with 
unique colors. Peptides in red come from DIA-MS, peptides in blue come 
from TMT-MS. d. Boxplots for abundance of each peptide identified were 
evaluated with one-way ANOVA. Each datapoint in the SOD1 ALS group is 
annotated with the mutation associated with each patient
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