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Abstract 

Increased phosphorylation of TDP-43 is a pathological hallmark of several neurodegenerative disorders, includ-
ing amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the regulation and roles of TDP-
43 phosphorylation remain incompletely understood. A variety of techniques have been utilized to understand 
TDP-43 phosphorylation, including kinase/phosphatase manipulation, phosphomimic variants, and genetic, physical, 
or chemical inducement in a variety of cell cultures and animal models, and via analyses of post-mortem human 
tissues. These studies have produced conflicting results: suggesting incongruously that TDP-43 phosphorylation 
may either drive disease progression or serve a neuroprotective role. In this review, we explore the roles of regula-
tors of TDP-43 phosphorylation including the putative TDP-43 kinases c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, 
MEK1, TTBK1, and TTBK2, and TDP-43 phosphatases PP1, PP2A, and PP2B, in disease. Building on recent studies, we 
also examine the consequences of TDP-43 phosphorylation on TDP-43 pathology, especially related to TDP-43 mislo-
calisation, liquid–liquid phase separation, aggregation, and neurotoxicity. By comparing conflicting findings from vari-
ous techniques and models, this review highlights both the discrepancies and unresolved aspects in the understand-
ing of TDP-43 phosphorylation. We propose that the role of TDP-43 phosphorylation is site and context dependent, 
and includes regulation of liquid–liquid phase separation, subcellular mislocalisation, and degradation. We further 
suggest that greater consideration of the normal functions of the regulators of TDP-43 phosphorylation that may be 
perturbed in disease is warranted. This synthesis aims to build towards a comprehensive understanding of the com-
plex role of TDP-43 phosphorylation in the pathogenesis of neurodegeneration.
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Graphical Abstract
TDP-43 is subject to phosphorylation by kinases and dephosphorylation by phosphatases, which variably impacts 
protein localisation, aggregation, and neurotoxicity in neurodegenerative diseases. 

Background
Amyotrophic lateral sclerosis (ALS), frontotemporal 
dementia (FTD), and limbic-predominant age-related 
TDP-43 encephalopathy (LATE) are fatal and devastat-
ing neurodegenerative disorders characterised by the 
cytoplasmic mislocalisation and aggregation of RNA-
binding proteins. Among these proteins, TAR DNA-
binding protein 43 (TDP-43) is the primary aggregating 
protein driving pathology in approximately 97% of ALS, 
50% of FTD, and all LATE cases [1, 2]. Furthermore, 
TDP-43-positive aggregates have been observed in a 
subset of other neurodegenerative disorders including 
Alzheimer’s disease, Parkinson’s disease, and Hunting-
ton’s disease (HD) [3–10]. As a unifying feature among 
the heterogeneity between and within these disorders, 
TDP-43 aggregation and abnormal TDP-43 post-trans-
lation modifications (PTMs), particularly phosphoryla-
tion, has emerged as a key pathological hallmarks of 
TDP-43 proteinopathy. Despite this, the causes, impli-
cations, and contributions of aberrant TDP-43 phos-
phorylation in disease pathogenesis remain unclear 
[11–13]. While TDP-43 phosphorylation correlated 
with disease progression [14–30], emerging evidence 
suggests that TDP-43 phosphorylation may be part of 
a neuro-protective mechanism [31–35]. This review 
discusses the regulators, timing, and roles of TDP-43 
phosphorylation to explore whether it is protective or 
disease-contributing.

TDP‑43
Function
TDP-43 is an essential RNA and DNA binding protein 
encoded by the human TARDBP gene, with vital roles 

in gene expression and RNA metabolism. This includes 
critical processes such as transcription, translation, 
RNA splicing, and mRNA stability (reviewed in [36]). 
TDP-43 interacts with over 4,000 mRNA transcripts, 
with high specificity towards UG-rich RNA sequences, 
and self-regulates expression levels through a negative 
feedback loop by destabilising its own mRNA [37–
39]. TDP-43 plays an important role in RNA splicing, 
with loss of nuclear TDP-43 causing mis-splicing with 
emerging implications for neurodegenerative pathol-
ogy. For example, TDP-43 mislocalisation induces 
cryptic exon inclusion in genes that regulate neu-
ronal function such as UNC13A and STMN2, leading 
to decreased expression of their translated proteins 
[40–44]. TDP-43 also plays a key role in cellular stress 
responses by regulating mRNA levels, such as G3BP1 
[45], to regulate stress granule assembly, apoptosis, 
axonal transport, and ribonucleoprotein transport [3, 
36, 46, 47]. By recruitment to cytoplasmic stress gran-
ules in response to cellular stress, TDP-43 also supports 
stress granule formation and stalling ribosomes [36, 
47–49]. TDP-43 is modified by many different PTMs, 
including acetylation, SUMOylation, ubiquitination, 
nitrosylation, methylation, C-terminal fragmentation, 
disulfide bridge formation, citrullination, and phospho-
rylation [11–13, 50–57]. These modifications likely play 
crucial roles in regulating TDP-43 function and aggre-
gation propensity [36].

Localisation
TDP-43 is a ubiquitously expressed protein translated 
in the cytoplasm and transported to the nucleus due to 
its nuclear localisation signal (NLS). Physiological TDP-
43 is primarily localised in the nucleus yet can shuttle 
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between the cytoplasm and nucleus [58]. In Drosophila 
neurons, TDP-43 forms cytoplasmic mRNP granules that 
utilize microtubule-dependent transport to deliver target 
mRNA to distant neuronal compartments [59]. Similarly, 
in mouse primary hippocampal neurons, TDP-43 associ-
ates with mRNP granules and regulates their transport in 
dendrites to coordinate mRNA localisation and transla-
tion [60]. During cellular stress, TDP-43 translocates to 
the cytoplasm for stress granules assembly [47, 48]. TDP-
43 export to the cytoplasm is a passive process, while 
being actively transported into the nucleus by importins, 
for example the importin α/β heterodimer, which rec-
ognises the NLS of TDP-43 [61, 62]. TDP-43 is also pre-
sent at low levels inside mitochondria of human motor 
and cortical neurons, though these levels are increased 
in post-mortem ALS/FTLD-TDP spinal cord and fron-
tal context tissue, as well as mice and primary rat motor 
neurons expressing pathological TDP-43 variants [63–
65]. This dynamic localisation underscores the role of 
TDP-43 in responding to cellular conditions and stress.

Structure
TDP-43 is comprised of 414 amino acids that contain 
a NLS, two RNA-recognition motifs (RRM1, RRM2), 
and an intrinsically disordered C-terminal domain 
(CTD) consisting of glycine-rich and glutamine-aspar-
agine-rich regions [66] (Fig.  1A). The C-terminus lacks 
a well-defined native structure, as highlighted by its 
low predicted Local Distance Difference Test (pLDDT) 
score, a measure of confidence in protein structure 
predictions, by AlphaFold3, a protein structure predic-
tion tool [67] (Fig. 1D,H,L,P). This low score reflects the 
structural flexibility of the C-terminus, which enhances 
its mobility and malleability and allows interaction with 
a diverse range of molecular partners [68]. The C-termi-
nus is also referred to as a prion-like domain due to its 
high proclivity for aggregation and the location of many 
sporadic and familial ALS/FTLD-TDP-associated muta-
tions [69–71]. The N-terminus has been implicated in 
multiple roles, including its ability to promote TDP-43 

oligomerization and DNA binding affinity in  vitro and 
in vivo systems [72–74].

Pathology
TDP-43 pathology is a progressive process that results 
in the accumulation of cytoplasmic TDP-43 aggregates. 
This occurs notably in the upper and lower motor neu-
rons in the motor cortex and spinal cord for ALS, and 
von Economo neurons and fork cells in the frontoin-
sular and anterior cingulate cortices in most cases of 
frontotemporal lobar degeneration with TDP-43 pathol-
ogy (FTLD-TDP), the pathological entity which causes 
approximately half of all FTD [78–81] (Fig. 2). An impor-
tant avenue for future research is mapping the brain 
regions where specific TDP-43 phosphorylation sites are 
detected, as selective neuronal vulnerability may be influ-
enced by region-specific phosphorylation patterns. In 
disease, TDP-43 mislocalises to the cytoplasm, leading to 
an accumulation of cytoplasmic and loss of nuclear TDP-
43 [55, 82]. The mechanisms underlying TDP-43 aggre-
gation are complex, with emerging evidence implicating 
liquid–liquid phase separation (LLPS) as an intermedi-
ate phase in the transition from soluble to aggregated 
TDP-43 [83–90]. LLPS is the formation of membrane-
less protein organelles, also known as liquid droplets, to 
compartmentalise various biological processes such as 
the spatiotemporal organisation of RNA processing [91–
93]. Recent studies have revealed that TDP-43 undergoes 
LLPS, forming dynamic and reversible liquid-like assem-
blies to create specialised cellular microenvironments for 
RNA processing and metabolism, such as stress gran-
ules and paraspeckles [94, 95]. Additionally, TDP-43 can 
form spherical shells called anisosomes when unable to 
bind RNA through disease-related mutations or acetyla-
tion [89, 96]. Intrinsically disordered regions (IDRs), like 
the TDP-43 CTD, are a common feature of proteins that 
undergo LLPS and have been reported to mediate the 
dynamics of the liquid droplet [97, 98]. LLPS-mediated 
aggregation has been observed in other neurodegen-
erative proteins, including α-synuclein, tau, FUS and 

Fig. 1 TDP-43 structure and phosphorylation sites. A Schematic of TDP-43, showing the N-terminus region (purple) with a nuclear localising signal 
(NLS), the binding region (blue) with two RNA-recognition motifs (RRM1, RRM2), and the C-terminus region (orange) with a glycine-rich domain. 
B TDP-43 phosphorylation sites detected in post-mortem ALS and FTLD-TDP brain and spinal cord tissue, along with potential phosphorylation 
sites [11–13, 52, 75–77]. Sites are listed by amino acid (serine (S), threonine (T), or tyrosine (Y)) and coloured by their localisation (N-terminus, 
purple; binding region, blue; C-terminus, orange). C-F “front”, (G-J) “left side”, (K-N) “right side”, and (O-R) “back” view of TDP-43 (Q13148) structure 
as predicted by AlphaFold3 and visualised in PyMOL. TDP-43 is represented in cartoon (C,G,K,O) or surface (E,I,M,Q) form, with the N-terminus 
in purple, binding region in blue, and the C-terminus in orange. D,H,L,P TDP-43 cartoon coloured by predicted Local Distance Difference Test 
(pLDDT), which shows regions with very high (dark blue, pLDDT > 90), high (light blue, pLDDT = 70–90), low (yellow, pLDDT = 50–70), and very low 
(orange, pLDDT < 50) confidence in the predicted structure as calculated by AlphaFold3. F,J,N,R Electrostatic surface potential (ESP) was calculated 
using APBS Electrostatics Plugin in Pymol where regions coloured red indicates negative potential, while regions indicate neutral potential, and blue 
indicate positive potential

(See figure on next page.)
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hnRNPA1 [93–95, 98–104]. When LLPS dynamics are 
disrupted, TDP-43 liquid droplets can mature into a less 
dynamic gel-like state before solidifying to form aggre-
gates [36, 83]. These aggregates represent a hallmark of 
TDP-43 pathology and are observed in post-mortem tis-
sue [11, 55]. Aggregated TDP-43 exhibits several PTMs 

including acetylation, phosphorylation, SUMOylation, 
and ubiquitination [11, 51, 55, 82, 105]. Several studies 
suggest that TDP-43 aggregation and LLPS are driven 
by its C-terminal IDR, the region which experiences 
the most pathological phosphorylation [99, 106, 107] 
(Fig.  1B). Phosphorylated TDP-43 aggregates have also 

Fig. 1 (See legend on previous page.)
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been detected in lysosomes in post-mortem ALS/FTLD 
pre-frontal cortex tissue, suggesting autophagy plays a 
role in cytoplasmic TDP-43 accumulation [108].

TDP-43 pathology is hypothesised to drive dual tox-
icity: a gain-of-function toxicity through the presence 
of cytoplasmic aggregates and a loss-of-function toxic-
ity due to the depletion of functional nuclear TDP-43 
[36, 109–113]. Loss of functional TDP-43 affects various 
RNA and protein targets, leading to several detrimental 
events linked with neurodegenerative processes. One 
notable example is the mis-splicing of UNC13A mRNA 
due to TDP-43 cytoplasmic mislocalisation, causing 
reduced UNC13A protein expression, which is impli-
cated in the pathogenesis of ALS and FTLD-TDP [40, 
43]. Furthermore, TDP-43 pathology and phosphoryla-
tion may be controlled by an unidentified direct or an 
indirect mechanism, for example the accumulation of 
TMEM106B, a risk factor for FTD, correlates with insol-
uble phosphorylated TDP-43 levels in FTLD-TDP type A 
post-mortem tissue [114]. This evolving understanding 

of TDP-43 pathology offers valuable insights into the 
complex interplay of factors, including phosphorylation, 
which contribute to the pathogenesis of neurodegenera-
tive diseases.

TDP‑43 phosphorylation
Phosphorylation is a fundamental and reversible PTM 
involving the covalent attachment of a negatively charged 
phosphoryl group to specific amino acids, primarily 
serine, tyrosine, or threonine in eukaryotes [115, 116]. 
Structural studies suggest that serine and threonine 
phosphorylation have distinct conformational effects, 
with threonine phosphorylation inducing greater rigid-
ity through a process known as pseudocyclization, 
wherein noncovalent interactions stabilize a constrained 
backbone conformation that mimics proline’s backbone 
cyclization [117]. Phosphorylated TDP-43 is a major 
pathological hallmark, consistently observed in ALS and 
FTLD-TDP but poorly detected in physiological con-
ditions [11–13]. This suggests that TDP-43 in healthy 

Fig. 2 TDP-43 pathology in ALS and FTLD-TDP. Physiological TDP-43 is primarily nuclear with some cytoplasm shuttling and can undergo liquid 
liquid phase separation (LLPS) to form liquid droplets, membrane-less organelles that provide microenvironments for cellular processes. In 
disease, TDP-43 mislocalises to the cytoplasm and forms insoluble aggregates, possibly through transition from liquid droplets into less-dynamic 
gel-like state, then solid state aggregates. This process is toxic to the neurons due to a loss of nuclear TDP-43 and gain of TDP-43 aggregates. The 
neurotoxicity leads to a loss of neurons including upper and lower motor neurons within the motor cortex and spinal cord for ALS (blue), and von 
Economo neurons and fork cells in the frontoinsular and anterior cingulate cortices for FTLD-TDP (red). Figure constructed using biorender.com
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tissue is either not phosphorylated or experiences low 
levels of transient phosphorylation due to an equal bal-
ance between kinase and phosphatase activity. Notably, 
phosphorylation at S409/410 is commonly used to iden-
tify TDP-43 inclusions in brain and spinal cord as it is 
highly consistent in disease and due to the development 
of highly specific and reliable antibodies [11–13]. Of the 
64 potential TDP-43 phosphorylation sites, 27 have been 
detected in ALS or FTLD-TDP via mass spectrometry 
approaches, with six major pathological sites recognised: 
S369, S379, S403/404, and S409/410 [11–13, 52, 75–77] 
(Fig. 1B). Nineteen of these pathological sites are within 
the C-terminus, potentially owing to the susceptibility 
of IDRs to PTMs and its role in mediating LLPS [118–
121]. The presence of phosphorylated TDP-43 in disease 
therefore raises the question of whether it contributes to 
disease progression and neuron loss (i.e., causative) or a 
cellular defence mechanism (i.e., protective).

Techniques for studying TDP‑43 phosphorylation
To investigate the role of TDP-43 phosphorylation in 
disease, several in  vitro and in  vivo models and various 
experimental approaches have been utilised (Table  1). 
Manipulating the abundance levels of kinases and phos-
phatases through overexpression, knockdown/out, or 
pharmacological inhibition have played a prominent 
role in studying TDP-43 phosphorylation. Overexpres-
sion of kinases that target TDP-43 can induce TDP-43 
phosphorylation in vitro and in vivo, for example TTBK1 
expression in HEK293 cells increased TDP-43 mislocali-
sation and in C. elegans enhanced TDP-43 cytoplasmic 
accumulation and negatively impacted locomotion [22, 
25]. Conversely, knockdown or knockout approaches, 
achieved through techniques such as RNA interference 
or CRISPR/Cas9 gene editing, can assist in identifying 
the consequences of decreased TDP-43 phosphoryla-
tion by targeting specific kinases. For instance, TTBK1 
knockdown has been shown to ameliorate neurite length 
and neuron loss associated with TDP-43 overexpression 
in iPSC-derived neurons [25]. Similar to kinase manipu-
lation, phosphatase expression can be adjusted to modu-
late TDP-43 dephosphorylation activity. For instance, 
knockout of the phosphatase calcineurin led to increased 
TDP-43 phosphorylation, enhanced TDP-43 accumu-
lation, and exacerbated motor phenotypes in C. elegans 
[122].

Since physiological TDP-43 phosphorylation is not 
typically detectable under basal conditions, these 
approaches require a model system where TDP-43 phos-
phorylation can be induced. Such models include using 
ALS or FTLD-TDP immortalised cells, inducement by 
cellular stress or glutathione depletion, expression of 

mutant TDP-43, or TDP-43 overexpression [19, 23, 24, 
26, 27, 30, 123]. Manipulating these enzymes may cause 
off-target effects by altering other cellular pathways. 
For example, in addition to phosphorylating TDP-43, 
CK2 has over 350 protein substrates, many of which are 
involved in spliceosome functions [124, 125]. This makes 
it challenging to distinguish if pathological changes from 
kinase or phosphatase manipulation are due primarily to 
TDP-43 phosphorylation or to secondary effects of other 
kinase target pathways. Thus, while these approaches are 
powerful for studying TDP-43 phosphorylation in a dis-
ease context, their findings must be validated through 
complementary approaches.

Phosphomimicry is a technique to study the effects of 
phosphorylation at specific residues, both in vitro and 
in vivo. This method involves substituting phosphoryl-
ation-specific amino acids with either phospho-mimic 
residues, glutamic acid or aspartic acid, or phospho-
ablate residues, such as alanine (Fig. 3). Glutamic acid 
and aspartic acid carry a negative charge that mim-
ics phosphorylation, while alanine lacks the hydroxyl 
group of serine, threonine or tyrosine which is neces-
sary for phosphorylation and therefore prevents phos-
phorylation. This approach allows for precise control 
of phosphorylation at specific residues and avoids the 
off-target effects of kinase overexpression. However, 
conflicting results raise debate as to whether glutamic 
acid/aspartic acid accurately represent phosphorylation 
as their charge and steric hinderance is reduced com-
pared to true serine phosphorylation [34, 126, 127]. 
Phosphomimicry is also a permanent change unaf-
fected by kinase or phosphatase activity, which poses a 
challenge for studying dynamic processes.

In vitro kinase and phosphatase assays have offered 
valuable insight into studying the dynamics of phos-
phorylated TDP-43 and its interactions with kinases 
and phosphatases. These assays involve the incubation 
of purified recombinant TDP-43 with a kinase or phos-
phatase and measuring the levels of phosphorylation 
or protein behaviour. For example, these assays have 
demonstrated that several kinases and phosphatases 
directly phosphorylate or dephosphorylated TDP-43 
[11, 14, 15, 29, 35, 56, 122]. They also provide an oppor-
tunity to study TDP-43 oligomerisation and LLPS in a 
simplified environment that lacks regulatory elements 
[34]. However, this artificial environment is highly 
influenced by experimental conditions and lacks cel-
lular factors which can influence protein structure, 
behaviour, and other PTMs. For example, Haider et al. 
[128] found that LLPS of CTD phosphomimic TDP-43 
is dependent on salt concentration, which highlights 
that experimental conditions can influence findings. 
In vitro protein assays often do not reflect physiological 
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levels which can lead to results that differ from in vivo 
conditions. Therefore, while in  vitro kinase and phos-
phatase assays are invaluable for initial mechanistic 
studies, their findings must be validated in more com-
plex in vitro and in vivo systems to ensure physiological 
relevance.

Additionally, several studies have reported that certain 
cellular stresses including impaired RNA binding (e.g. 
acetylation-mutant TDP-432 KQ), oxidative stress (e.g. 
glutathione depletion), and heat shock can trigger TDP-
43 phosphorylation and accumulation of insoluble TDP-
43 [32, 96, 129, 130]. For example, oxidative stress from 
glutathione depletion caused by ethacrynic acid treat-
ment has been reported to induce TDP-43 phosphoryla-
tion at S409/410 in HEK293T and SH-SY5Y cells [19, 26, 
30, 122, 131, 132], although the relevance of this chemical 
stressor to disease contexts remains unclear and may be 
cell type dependent. These findings provide insight into 
how environmental factors may contribute to the patho-
logical phosphorylation of TDP-43 and provide models 
to test pharmaceutical regulators [19, 32, 130].

Bioinformatic approaches may be useful to predict how 
TDP-43 phosphorylation influences TDP-43 structure 
and interactions. However, most pathological TDP-43 

phosphorylation sites lie within the IDR and have low 
structural reliability [67, 133], such that structural tools 
that can predict the impact of PTMs on proteins, such as 
AlphaFold3, may have limited reliability in defining this 
region (Fig.  1D,H,L,P). This has also caused challenges 
for cryogenic electron microscopy and other experi-
mental structural techniques to determine the struc-
ture of the TDP-43 CTD. Coarse-grain simulations can 
model large-scale dynamics and interactions, offering a 
broader understanding of TDP-43 behaviour influenced 
by phosphorylation states [34, 128]. While bioinformatic 
approaches are powerful tools to study many parameters 
in a simple and cost-effective method, currently experi-
mental validation is vital to ensure the findings are con-
sistent with in vivo conditions.

Possible interdependence of TDP‑43 phosphorylation sites
A recent study of tau protein, involved in neurodegen-
eration, has uncovered a complex network of phospho-
rylation site interdependence, suggesting that certain 
phosphorylation sites termed ‘master sites’ influence 
phosphorylation at other positions within the same pro-
tein [134]. A site interdependence screen was performed 
in HEK293T cells expressing phosphomimic tau variants 

Fig. 3 Phosphomimic TDP-43 variants used in literature. Amino acid substitution can replace serine (purple) with aspartic acid (blue) to mimic 
or alanine (grey) to prepare phosphorylation. B Phosphomimic TDP-43 variants used to study C-terminal TDP-43 phosphorylation. Figure 
constructed using biorender.com
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at 17 sites with or without concomitant expression of 
12 different tau kinases, and phospho-epitope-specific 
tau antibodies targeting 10 different sites were used to 
detect phosphorylation. Phosphorylation at three spe-
cific threonine residues caused the most significant phos-
phorylation at other sites, and ablation of each of these 
sites decreased phosphorylation at other sites, suggesting 
they can control tau hyperphosphorylation [134]. Since 
tau and TDP-43 both undergo disease-associated hyper-
phosphorylation and share several kinases, TDP-43 may 
also have a phosphorylation interdependence network. 
Indeed, a recent study suggests that TDP-43 phospho-
rylation sites influence each other as well as the addition 
of other PTMs. Aikio et  al. [56] found that mimicking 
phosphorylation at S292 independently stimulates phos-
phorylation at S409/410 in SH-SY5Y cells, and reduced 
methylation at nearby R293. To date, few TDP-43 phos-
phorylation sites have been characterised in this manner, 
largely due to the lack of commercially available TDP-43 
phosphorylation antibodies across the different phospho-
rylation sites. Increased availability of additional phos-
phorylation-specific TDP-43 antibodies would greatly 
increase understanding of this process.

Regulators of TDP‑43 phosphorylation
Phosphorylation is regulated by kinases and phos-
phatases, which add and remove phosphate groups from 

other proteins. Dysfunction in these enzymes occurs in 
several neurodegenerative disorders and correlates with 
the increased phosphorylation of aggregation-prone 
proteins, including α-synuclein, FUS, tau, and TDP-43 
[25, 135–141]. For example, the upregulation of casein 
kinase 1 (CK1) in ALS, FTLD-TDP, and Alzheimer’s dis-
ease suggests that enhanced kinase activity may drive the 
increased phosphorylation of aggregating protein sub-
strates including TDP-43, tau, and α-synuclein [20, 24, 
142–144]. At least 9 different kinases have been reported 
to phosphorylate TDP-43, including c-Abl [29], Cell Divi-
sion Cycle 7 (CDC7) [14], Casein Kinase 1 (CK1), Casein 
Kinase 2 (CK2) [11], Inhibitor of nuclear factor kappa-
B kinase subunit beta (IKKβ) [35], Mitogen-Activated 
Protein Kinase 14 (p38α/MAPK14), Mitogen-Activated 
Protein Kinase Kinase 1 (MEK1) [32], and Tau Tubulin 
Kinases 1 and 2 (TTBK1/TTBK2) [15], with varying lev-
els of evidence available (Fig. 4, Table 2). To date, no pro-
tein-based screen has been performed to identify the full 
suite of TDP-43 kinases, and whether a single or multiple 
kinases are most important for driving TDP-43 phospho-
rylation and how the kinases may influence each other 
remains largely unexplored.

Protein Phosphatase 1 (PP1), Protein Phosphatase 2 
(PP2A) and Protein Phosphatase 2B (PP2B), also known 
as calcineurin, have been identified as TDP-43 phos-
phatases, although few studies have investigated the role 

Fig. 4 TDP-43 phosphorylation is regulated by kinases and phosphatases. Phosphorylation involves the transfer of the γ-ATP phosphate of ATP 
to TDP-43 by a kinase (purple). Dephosphorylation is the removal of this phosphate group by a phosphatase (pink). Reported TDP-43 kinases 
include c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, MEK1, TTBK1, and TTBK2 while phosphatases include PP1, PP2A and PP2B. Figure constructed 
using biorender.com
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of these phosphatases in TDP-43 pathology (Table  3). 
Understanding the driving forces behind TDP-43 phos-
phorylation, and possible dephosphorylation, is key to 
understanding pathology progression.

Putative TDP‑43 kinases
Tyrosine‑protein kinase ABL1 (c‑Abl)
c-Abl is a tyrosine kinase involved in several cellu-
lar stress pathways [145], activated by various triggers 
including oxidative stress, hyperglycaemia, and DNA 
damage, to drive a signal cascade leading to cell death 
through apoptosis [146–148]. Increased c-Abl expres-
sion has been found in postmortem spinal cord tissue 
from sporadic ALS cases [149, 150]. Inhibiting c-Abl 
has shown promising therapeutic effects in iPSC derived 
motor neurons from ALS patients with SOD1 muta-
tions, TDP-43 mutations, or sporadic ALS, as well as in 
a  SOD1G93A transgenic ALS mouse model [150, 151]. A 
recent study employing an in vitro kinase assay demon-
strated that c-Abl can phosphorylate TDP-43 at tyrosine 
43 (Y43), and a direct interaction was supported by co-
immunoprecipitation experiments in SH-SY5Y cells [29]. 
Mimicking phosphorylation at Y43 (Y43E) promoted 
TDP-43 mislocalisation and stress granule formation in 
SH-SY5Y cells, and TDP-43 mislocalisation, insolubil-
ity, aggregation and neuronal death in primary cortical 
neurons [29]. However, it should be noted that TDP-43 
Y43 phosphorylation has not be detected in post-mor-
tem ALS or FTLD-TDP tissues to date. Notably, c-Abl is 
the only tyrosine kinase, as opposed to serine/threonine 
(Ser/Thr) kinases, reported to be able to phosphorylate 
TDP-43, although evidence for TDP-43 tyrosine phos-
phorylation in human disease pathology samples remains 
unclear.

Cell division cycle 7‑related protein kinase (CDC7)
CDC7 is a highly conserved Ser/Thr kinase involved in 
crucial cellular processes such as cell cycle regulation, 
DNA replication, and DNA repair [152, 153]. Although 
CDC7 is known for its role in the cell cycle, including 
regulation by the zinc-finger activator DBF4 [153–158], 
the function of CDC7 in non-proliferating neurons is 
not well understood. However, CDC7 was indicated as 
a TDP-43 kinase through an RNA interference kinome 
screen in C. elegans based on effects on TDP-43-associ-
ated behavioural phenotypes [14]. In vitro kinase assays 
with wildtype and mutant (M337 V) TDP-43 also showed 
robust phosphorylation at S409/410 by CDC7, indicating 
a direct interaction [14, 15]. Inhibition of CDC7 has been 
observed to decrease, but not eliminate, TDP-43 phos-
phorylation in a variety of models, including SH-SY5Y 
cells, ALS and FTLD-TDP immortalized lymphocytes, 

NSC-34 cells, TDP-43M337V C. elegans, and TDP-43A315T 
mice [14, 26, 27].

Casein kinase 1 (CK1)
CK1 is a family of Ser/Thr kinases of seven isoforms (α, 
β, δ, ϵ, γ1, γ2, and γ3) involved in many pathways, includ-
ing circadian rhythm, vesicular trafficking, cell cycle pro-
gression, DNA repair, and signal transduction pathways 
[159–165]. CK1 α, δ, and ϵ localise to the cytoplasm and 
nucleus while CK1γ, due to C-terminal palmitoylation, is 
anchored to the plasma membrane [166]. CK1 was iden-
tified as a TDP-43 kinase through an in vitro kinase assay 
and has since been found to phosphorylate TDP-43 at 29 
sites, including S403/404 and S409/410 [11, 167]. CK1 
is also implicated in other neurodegenerative disorders, 
including Alzheimer’s disease and Parkinson’s disease, 
as it can phosphorylate APP-β [168], tau [169–171], and 
α-synuclein [171, 172]. Enhanced CK1 expression has 
also been observed in ALS, FTLD-TDP, and Alzheimer’s 
disease [20, 24, 142, 144]. TDP-43 itself has been shown 
to regulate CK1δ and CK1ε expression [20, 173], indi-
cating a complex interplay between CK1 and TDP-43 in 
disease contexts. Inducible oligomerisation of TDP-43 
can enhance CSNK1D (CK1δ gene) and CSNK1E (CK1ε 
gene) expression in SH-SY5Y cells [173]. Furthermore, 
enhanced UV crosslinking and immunoprecipitation 
(eCLIP) of the frontal cortex of sporadic ALS patients 
found that TDP-43 binds CSNK1E mRNA [20]. In addi-
tion, TDP-43 knockdown decreased CSNK1E but not 
CSNK1D mRNA levels in motor neuron progenitors [20], 
suggesting that CK1ϵ may be of particular importance in 
ALS. A recent study highlighted CK1δ and CK1ε as major 
TDP-43 kinases at S409/410 by comparing the effects 
of seven small molecule kinase inhibitors on TDP-43 
pathology in a SH-SY5Y neuroblastoma cell model [173]. 
However, this study leaves open the possibility that sev-
eral kinases drive pathological TDP-43 phosphorylation, 
since inhibition of these kinases individually decreased 
but did not eliminate TDP-43 phosphorylation [14, 15, 
173]. A recent study explored the effects of CK1ε inhibi-
tion in a cytoplasmic TDP-43 mouse model, suggesting 
that therapeutic inhibition of CK1ε can reduce TDP-43 
phosphorylation, lower neurofilament light chain levels, 
and improve survival [174].

Casein kinase 2 (CK2)
CK2 is a tetrameric Ser/Thr kinase known for its multi-
faceted roles in cellular processes, ranging from apop-
tosis and cell survival to RNA and protein synthesis, 
with over 300 substrates [124, 175]. CK2 comprises two 
catalytic subunits (α and/or α’) and two regulatory subu-
nits (β), and unlike other kinases is constitutively active 
[124, 175–177]. CK2 was identified as a TDP-43 kinase 
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Table 3 Reported TDP-43 phosphatases

Abbreviations: AD Alzheimer’s Disease, PD Parkinson’s Disease, ALS Amyotrophic Lateral Sclerosis, sALS sporadic ALS

Kinase Description Accession pTDP‑43 
sites

In vitro 
phosphatase 
assay

TDP‑43 
studies

Other 
neurodegenerative 
substrates

Expression 
and activity in 
primary TDP‑43 
proteinopathies

Expression and 
activity in other 
neurodegenerative 
diseases

PP1 Protein phos-
phatase 1

P62136 
(PPP1CA)
P62140 
(PPP1CB)
P36873 
(PPP1CC)

S379, S403, 
S404, S409, 
S410 [254]

N/A [254] Tau [292]
TDP-43 [254]

• ↓ PP2A activity in AD 
brain [293, 294]

PP2A Protein phos-
phatase 2 A

Structural 
subunit A
P30153 
(PPP2R1A)
P30154 
(PPP2R1B)
Regulatory 
subunit B
P63151 
(PPP2R2A)
Q00005 
(PPP2R2B)
Q9Y2 T4 
(PPP2R2C)
P56211 
(PPP2R2D)
Q06190 
(PPP2R3 A)
Q9Y5P8 
(PPP2R3B)
Q9 JK24 
(PPP2R3C)
Q15257 
(PPP2R4)
Q15172 
(PPP2R5A)
Q15173 
(PPP2R5B)
Q13362 
(PPP2R5C)
Q14738 
(PPP2R5D)
Q16537 
(PPP2R5E)
Catalytic 
subunit C
P67775 
(PPP2CA)
P62714 
(PPP2CB)

N/A α-synuclein, PD [295, 
296]
Tau, AD [297–302]

• ↓ PP2A activity in AD 
brain [293, 294]
• ↓ PP2A mRNA in AD 
hippocampus [303]
• ↓ PP2A expression 
and activity in frontal 
and temporal cortices 
in AD brain [304]

PP2B Protein phos-
phatases 2B

Q08209 
(PPP3CA) 
P16298 
(PPP3CB) 
P48454 
(PPP3CC) 
P63098 
(PPP3R1) 
Q63811 
(PPP3R2)

S409, S410 
[122]

[122] [122] Tau [298, 301, 305, 
306]
TDP-43 [122]

• ↓ activity in spo-
radic and familial 
ALS [260, 261]
• ↓ PPP3CA 
and PP3R1 in FTD 
and rNLS8 TDP-43 
mouse models 
[143, 193]

• ↓ PP2B activity in AD 
brain [293, 294, 307, 
308]
• ↑ PP2B activity in AD 
brain [309]
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alongside CK1 through an in  vitro kinase assay with 
wildtype TDP-43 [11]. To date, no study has compre-
hensively elucidated all CK2 phosphorylation sites on 
TDP-43, but probing with phospho-specific antibod-
ies has revealed phosphorylation at S379, S403/404, and 
S409/410 [11]. Like CK1, CK2 can also phosphorylate 
APP-β [168], α-synuclein [172, 178–181], and tau [182], 
suggesting a broad involvement in neurodegenerative 
diseases.

Inhibitor of nuclear factor kappa‑B kinase subunit beta (IKKβ)
IKKβ is a catalytic subunit of IκB kinase (IKK) alongside 
catalytic IKKα and regulatory IKKγ subunits (reviewed 
in [183]), controlling inflammation and other immune 
responses through regulation of NF-κB. A recent study 
demonstrated that overexpression of IKKβ, but not IKKα 
or IKKγ, significantly increases NF-kB activity and pro-
motes the proteasomal degradation of cytoplasmic TDP-
43 in Neuro2a cells [35]. Using LC–MS/MS analysis, it 
was revealed that overexpression of IKKβ induces TDP-
43 phosphorylation at threonine 8 (T8), serine 92 (S92) 
and serine 180 (S180), and an in vitro kinase assay dem-
onstrated that IKKβ directly phosphorylates TDP-43 at 
S92 [35]. Overexpression of IKKβ also decreased TDP-43 
aggregation in the hippocampus of a TDP-433A2S mouse 
model, induced phosphorylation at S92, and decreased 
neuronal damage. This study suggests that IKKβ plays a 
role in phosphorylating TDP-43, and also in promoting 
TDP-43 degradation.

Mitogen‑activated protein protein kinase 1 (MEK1)
MEK1, also known as MAP2 K1, is a key kinase in the 
MAPK/ERK extracellular signalling pathway, which reg-
ulates proteome stability, proliferation, differentiation, 
survival, cell cycle, and apoptosis [184–186]. The poten-
tial role of MEK as a TDP-43 kinase was first suggested 
by Li et al. [32], observing that MEK inhibition prevented 
TDP-43 phosphorylation at T153/Y155 in response to 
heat shock in HEK293 and SH-SY5Y cells. Heat shock, a 
known cellular stressor, can induce TDP-43 phosphoryla-
tion, with emerging evidence that heat shock proteins are 
part of a stress-responsive protective mechanism in dis-
ease [143, 187, 188], although the direct relevance of heat 
shock to neurodegeneration is debatable. Interestingly, 
overexpression of MEK1 induced TDP-43 phosphoryla-
tion in SH-SY5Y cells even in the absence of heat shock 
[32]. Further, inhibition of ERK, a downstream target of 
MEK1, did not prevent TDP-43 phosphorylation, sug-
gesting that the downstream MAPK/ERK pathway does 
not necessarily influence phosphorylation. While these 
findings hint at a regulatory relationship, the absence of 
direct evidence from in vitro kinase assays leaves a direct 
interaction between MEK1 and TDP-43 unexplored. 

Further research is required to confirm MEK1 as a TDP-
43 kinase and to clarify the functional significance of 
T153/Y155 residue phosphorylation, which is not com-
monly observed in disease.

Mitogen‑activated protein kinase 14 (p38α/MAPK14)
MAPK14, also known as p38α MAPK, is a ubiquitously 
expressed and highly conserved Ser/Thr kinase in the 
MAPK family, which plays a role in various cellular pro-
cesses such as transcription, differentiation, mRNA sta-
bility, cell cycle regulation, inflammation, and stress 
response pathways [189]. MAPK14, along with closely 
related MAPK11, MAPK12, and MAPK13, is activated 
by proinflammatory cytokines and other environmental 
stresses like oxidative stress, mediated by MAPK kinase 
kinases (MKKs) or autophosphorylation [190]. MAPK14 
was first linked to TDP-43 phosphorylation via demon-
stration that MAPK14 knockdown or pharmacological 
inhibition decreased phosphorylation of TDP-43M337V 
at S409/410 in SH-SY5Y cells [56]. Furthermore, expres-
sion of MAPK14 with a constitutively activate mutation, 
but not the wildtype variant, induced TDP-43 phos-
phorylation and enhanced aggregation and mislocalisa-
tion in SH-SY5Y cells. This suggests that MAPK14 may 
require extracellular signalling or stress conditions to 
be activated to phosphorylate TDP-43. However, this 
effect could be indirect due to impaired global nucleo-
cytoplasmic transport function by MAPK14 manipula-
tion. Co-immunoprecipitation experiments in SH-SY5Y 
cells showed a direct interaction between TDP-43 and 
MAPK14, suggesting that MAPK14 can directly phos-
phorylate TDP-43 [56]. Further research is needed to 
clarify the potential involvement of other regulators of 
MAPK14 relating to TDP-43 phosphorylation.

Tau‑tubulin kinase 1 and 2 (TTBK1, TTBK2)
TTBK1 and TTBK2 are multifunctional Ser/Thr kinases 
involved in various cellular processes, including micro-
tubule dynamics and neuronal development, with their 
name stemming from their affinity for microtubules and 
characterisation as tau kinases [191, 192]. Interestingly, 
TTBK1 and TTBK2 are the closest evolutionary relative 
of CK1 and are highly homologous to each other [160]. 
TTBK2 is ubiquitously expressed, while TTBK1 is neu-
ron specific [191]. TTBK1 and TTBK2 were identified as 
TDP-43 kinases alongside CDC7 in a RNA interference 
kinome screen [14]. While TTBK1 and TTBK2 did not 
phosphorylate TDP-43 during an in vitro kinase assay, a 
subsequent study demonstrated that they can phospho-
rylate TDP-43 under conditions of optimised magnesium 
concentration [15]. A recent in  vitro kinase assay using 
a truncated active form of TTBK1 also indicated that 
TTBK1 can phosphorylate TDP-43 [25]. Notably, TTBK1 
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levels are elevated and TTBK1 co-localizes with phos-
phorylated TDP-43 in ALS and FTLD-TDP post-mortem 
tissue, and also in a cytoplasmic TDP-43 mouse model 
[15, 22, 25, 143, 193], and TTBK2 was also elevated in the 
FTLD-TDP brain [22]. Despite these findings, the spe-
cific roles of TTBK1 and TTBK2 and the precise TDP-43 
phosphorylation sites targeting by these kinases remain 
poorly characterised.

Physiological pathways of putative TDP‑43 kinases
The reported TDP-43 kinases are involved in many key 
signalling pathways, including circadian rhythm, Wnt, 
ERK, NF-κB, p38, microtubule dynamics, and the cell 
cycle (Fig.  5). These pathways often overlap, creating 
a complex network that regulate cellular homeostasis, 

inflammation and cell division. Dysregulation of many 
of these pathways has been implicated in the pathogen-
esis of TDP-43 proteinopathies, leading to the overex-
pression of these kinases, which could potentially be a 
driving force behind aberrant TDP-43 phosphorylation. 
While targeting these kinases to modulate TDP-43 phos-
phorylation may appear to be a promising therapeutic 
strategy, significant challenges remain. The promiscuity 
of these kinases and interconnected nature of the path-
ways means that inhibiting one kinase could have unin-
tended off-target downstream effects. Therefore, while 
kinase regulation of TDP-43 may be important in neu-
rodegeneration, careful consideration must be given to 
the broader impact of therapeutic interventions targeting 
these kinases. Here, we will explore the known biology of 

Fig. 5 Physiological cellular pathways of putative TDP-43 kinases. Schematic of eight key biological pathways that involve c-Abl, CDC7, CK1, CK2, 
IKKβ, MAPK14, MEK1, TTBK1 and/or TTBK2. These pathways include 1) circadian rhythm, 2) Wnt pathway, 3) ERK pathway, 4) NF-κB pathway, 5) p38 
pathway, 6), microtubule dynamics, 7) PI3K/AKT/mTOR signalling, and 8) cell cycle. Figure constructed using biorender.com
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the putative TDP-43 kinases focused on biological path-
ways that may be of relevance to consider as off-target 
pathways when designing therapeutic interventions to 
modify TDP-43 phosphorylation.

Circadian rhythm CK1δ and CK1ε play key roles in cir-
cadian rhythm, which is an autonomous daily oscillation 
that maintains body homeostasis and plays important 
roles in metabolic regulation and memory consolidation. 
This rhythm is orchestrated by the phosphorylation of 
PERIOD (PER) by CK1δ and CK1ε, which leads to PER 
degradation and facilitates nuclear localisation, thereby 
modulating the length of the circadian period [194, 195]. 
Of note, circadian rhythm dysfunction has been identi-
fied in various neurodegenerative disorders including 
ALS, Alzheimer’s disease, Parkinson’s disease, Hunting-
ton’s disease, and multiple sclerosis (reviewed in [196]). 
In ALS  SOD1G93A transgenic mice, circadian rhythm 
dysfunction accelerated disease onset and progression 
through enhanced motor neuron loss, activated gliosis, 
and NF-κB inflammation [197]. Similar abnormalities are 
observed in FUS ALS mouse models, preceding cogni-
tive impairment onset [198]. Whether these effects are 
related to the regulation of TDP-43 phosphorylation by 
CK1δ and CK1ε remains to be explored.

Wnt pathway CK1α is involved in the Wnt path-
way, which is integral to embryonic development and 
adult tissue homeostasis. It is involved in both canoni-
cal (β-catenin dependent) and non-canonical (β-catenin 
independent) signalling pathways, modulating various 
cellular processes [199–201]. Abnormal Wnt signalling 
has been implicated in ALS, with elevated expression of 
Wnt ligands, receptors, and co-receptors in ALS spinal 
cord tissue [202–204]. This suggests Wnt dysfunction 
which may contribute to disease progression.

ERK pathway MEK1 kinase is involved in the extracel-
lular signal-regulation kinase (ERK) pathway, a subset 
of the mitogen-activated protein kinase (MAPK) path-
way, which plays a role in cell adhesion, differentiation, 
proliferation, and apoptosis. This pathway is activated 
by a series of upstream signals, including mitogens and 
growth factors, leading to the activation of MEK1/2 
(reviewed in [205]). MEK1/2 subsequently phosphoryl-
ates and activates ERK1/2, which translocates to the 
nucleus where it promotes cell proliferation, growth, sur-
vival, and cytokines production. Additionally, ERK1/2 
phosphorylates PARP- 1, enhancing NF-κB activity 
through the activation of the IκB kinase (IKK) complex. 
In ALS, ERK1/2 activation has been associated with dis-
ease progression, where its inhibition has been shown to 
provide protective effects (reviewed in [206]). ERK1/2 
signalling plays a role in oligodendrocyte myelination, 

with emerging evidence highlighting the involvement of 
oligodendrocyte dysfunction in ALS [207–210]. Collec-
tively, these findings suggest that the activation of MEK1 
through the ERK pathway, through its involvement in 
TDP-43 phosphorylation, neuronal signalling, and oli-
godendrocyte function, may represent a contributing 
mechanism underlying ALS pathology and a potential 
target for therapeutic intervention. Further investigation 
is required into the upstream pathway of MEK1 activa-
tion and how this influences TDP-43 phosphorylation.

NF‑κB inflammation Putative TDP-43 kinase IKKβ is 
involved in the NF-κB pathway, which is one of the most 
significant inflammatory pathways associated with TDP-
43 pathology. The canonical NF-κB pathway is activated 
in response to various stimuli, leading to the formation of 
the IKK complex, composed of catalytic subunits IKKβ, 
and IKKα, and the regulatory subunit IKKγ, also known as 
NF-κB essential modulator (NEMO) (reviewed in [211]). 
This complex phosphorylates Inhibitor of κB (IκB), caus-
ing IκB degradation and the release of NF-κB. The free 
NF-κB translocates to the nucleus to initiate the transcrip-
tion of genes involved in inflammation, innate immunity, 
and cell survival (reviewed in [212]). Activation of NF-κB 
can exacerbate neurodegenerative processes by promot-
ing neuroinflammation [213, 214], and NF-κB mRNA and 
protein levels are elevated in ALS patient spinal cords, sug-
gesting activation of the NF-kB pathway [215, 216]. TDP-
43 itself can regulate NF-κB pathways in both neurons and 
microglia [215, 217, 218]. Interestingly, neuron inhibition 
of NF-κB through expression of a super repressor form 
of IκBα in transgenic TDP-43A315T or TDP-43G348C mice 
decreased cytoplasmic TDP-43 mislocalisation, improved 
motor performance and cognition, and reduced motor 
neuron and gliosis loss [219]. Furthermore, chronic admin-
istration of LPS to activate the NF-κB pathway in TDP-
43A315T mice exacerbated cytoplasmic TDP-43 accumula-
tion and aggregation [215]. These studies suggest that the 
NF-κB pathway worsens TDP-43 pathology and may play 
an important role in regulating disease pathology, poten-
tially involving the TDP-43 kinase IKKβ. Understanding 
this pathway is important to more fully define the role of 
neuroinflammation in TDP-43 proteinopathies.

p38 pathway The TDP-43 kinase MAPK14 is involved 
in the p38 pathway, which is another type of mitogen-
activated protein kinase (MAPK) pathway that promotes 
inflammation, proliferation, senescence, RNA splicing, 
apoptosis and differentiation (reviewed in [220]). The 
pathway is activated by external signals including pro-
inflammatory cytokines, heat shock, and UV radiation, 
or internal signals such as oxidative stress [221–224]. A 
protein cascade causes phosphorylation and activation 
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of p38 MAPK kinases, including MAPK14, which allows 
entry to the nucleus. Nuclear MAPK14 inhibits NF-κB 
activity, promotes several transcription factors to make 
transcriptional changes, and the p38 pathway has been 
implicated in ALS pathology, particularly with SOD1 and 
FUS mutations (reviewed in [205]).

Microtubule dynamics Putative TDP-43 kinases CK1, 
TTBK1, and TTBK2 play a role in microtubule dynamics 
[225–228]. Microtubules are intracellular structures vital 
for neuron development and maintenance. MTs facili-
tate axonal transport which is required for mitochondrial 
recycling, vesicle and mRNA transport, and signalling 
pathways [229]. Microtubules are particularly impor-
tant for neurons as they play a role in neurite remodel-
ling, generation of neuronal compartments, and growth 
cone mechanics [230–232]. Mutations to TUBA4A, a 
microtubules protein, cause a rare familial form of ALS, 
highlighting the importance of microtubules for neuron 
survivability. Additionally, TDP-43 interacts with micro-
tubules for mRNP granule transport, which is vital for 
proper mRNA localisation and translation in neurons 
[59, 233]. Disruptions in microtubules dynamics can 
impair neuronal function and contribute to the patho-
genesis of ALS, highlighting the need for further research 
into the mechanisms regulating MT stability and trans-
port in neurons.

PI3 K/AKT/mTOR signalling pathway The putative 
TDP-43 kinase CK2 is involved in the PI3 K/AKT/mTOR 
pathway, which is an intracellular signalling process 
important for cellular growth, proliferation, metabolism, 
and apoptosis. This pathway is activated by upstream 
cytokines or growth factors, such as fibroblast growth 
factor (FGF) and platelet-derived growth factor (PDGF), 
activating PI3K (reviewed in [234]). Once activated, PI3K 
phosphorylates and activates Protein Kinase B (AKT), 
leading to several downstream effects, including the 
activation of mammalian target of rapamycin (mTOR) 
[234, 235]. Activated mTOR controls macroautophagy, 
involved in the clearance of many cellular proteins. CK2 
plays a pivotal role in this process by regulating AKT 
activity [236, 237]. In addition to directly phosphorylat-
ing AKT, CK2 phosphorylates the phosphatase PTEN to 
prevent the inhibition of AKT [236, 238, 239]. Overacti-
vation of this pathway has been linked with several can-
cers, causing abnormal cell growth, proliferation, migra-
tion, and chemotherapy resistance [240, 241], suggesting 
that therapeutic targeting may have unintended conse-
quences in the neurodegenerative disease context.

Cell cycle Several reported TDP-43 kinases, includ-
ing CDC7, CK1, MAPK14, MEK1, and IKKβ, play 

crucial roles in regulation of the cell cycle, particularly 
in response to cellular stress [228, 242]. While neurons 
are non-proliferating cells, evidence suggests that neu-
rons can re-enter the cell cycle, which promotes apopto-
sis [243]. Aberrant neuronal cell cycle re-entry has been 
highlighted as a major cause of neuronal loss in Alzhei-
mer’s disease [244–246] and ALS [247, 248]. Cell cycle-
related abnormalities in ALS include hyperphosphoryla-
tion of retinoblastoma protein pRb, increased cyclin D 
levels, and cytoplasmic redistribution of transcription 
factor E2F-1 in motor neurons and glia in sporadic ALS 
post-mortem tissue [247]. Additionally, the cell cycle 
checkpoint tumor suppressor protein p53 is elevated in 
motor neurons in the spinal cord but not in the motor 
cortex in ALS postmortem tissue, further implicating 
cell cycle dysfuction in ALS pathology [248]. Therefore, 
further investigations are required to understand the role 
of the cell cycle in TDP-43 neurodegenerative disorders, 
and whether this process activates/upregulates TDP-43 
kinases to regulate its phosphorylation.

TDP‑43 phosphatases
Protein phosphatase 1 (PP1)
PP1 is a class of multimeric Ser/Thr phosphatases 
responsible for a major portion of eukaryotic protein 
dephosphorylation [249]. This includes regulation of 
excitatory synaptic activity, glycogen metabolism, cell 
progression, cell division, apoptosis, protein synthesis, 
mitosis, and RNA splicing [250–252]. PP1 consists of a 
catalytic subunit (PPP1CA, PPP1CB, PPP1CC) and at 
least one regulatory subunit which confers selectivity, 
localisation and regulation [253]. Although the catalytic 
subunits have a similar sequence, the regulatory subu-
nits are diverse and identified by their function. PP1 was 
found to interact with TDP-43 by co-immunoprecipita-
tion in HEK293 cells [254]. Furthermore, overexpression 
of PP1α or PP1γ reduced TDP-43 phosphorylation in 
HEK293 cells, suggesting PP1 is important for TDP-43 
dephosphorylation [254]. Notably, while Gu et  al. [254] 
demonstrated that overexpression of wildtype TDP-43 
in HEK293T cells is sufficient to detect phosphorylated 
TDP-43, other HEK293T [25], SH-SY5Y [18], and Dros‑
ophila [16] studies did not detect phosphorylation from 
simply overexpressing TDP-43. This difference could be 
due to variations in transfection protocols, such as the 
type of DNA delivery method or the amount of plasmid 
DNA used, as well as differences in stress conditions 
during cell culturing, which could influence the cells’ 
response to TDP-43 overexpression. Interestingly, while 
PPP1 CA is downregulated in ALS/FTD frontal corti-
cal post-mortem tissue [255], PPP1CB and PPP1CC are 
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upregulated in FTD frontal and temporal cortex post-
mortem tissue [193].

Protein phosphatase 2 A (PP2A)
PP2A is another class of multimeric Ser/Thr phosphatase 
that plays a pivotal role in regulating cellular phospho-
rylation events. While PP2A is ubiquitously expressed, it 
is most abundant in the heart and brain, with an estimate 
that it accounts for 71% total phosphatase activity in the 
human brain [140, 256]. PP2A coimmunoprecipitated 
with TDP-43 in HEK293 cells, suggesting a direct inter-
action with TDP-43 [254]. However, no in  vitro assays 
have been performed to investigate whether PP2A is able 
to dephosphorylate TDP-43 directly.

Protein phosphatase 2B (PP2B)
PP2B, also known as calcineurin, is a conserved het-
erodimeric calcium/calmodulin dependent Ser/Thr 
phosphatase important in cellular signalling and stress 
responses. PP2B consists of two subunits: one of three 
calcineurin A (CnA) isozymes, a calmodulin-binding 
catalytic subunit (PPP3CA, PPP3CB, PPP3CC), and one 
of two calcineurin B (CnB) isozymes (PPP3R1, PPP3R2), 
a  Ca2+-binding regulatory subunit [257]. PP2B plays an 
important role in postsynaptic structures of central syn-
apses and synaptic endocytosis, and is activated by intra-
cellular  Ca2+ concentrations ([258], reviewed in [259]). 
An in  vitro dephosphorylation assay demonstrated that 
PP2B can dephosphorylate TDP-43 [254]. Additionally, 
a yeast two-hybrid screen identified PPP3CC as a pro-
tein interactor of TDP-43WT, TDP-43A315T, and TDP-
43M337V [122]. In disease, PP2B has lower activity in ALS 
brain and spinal cord tissue [260, 261]. Downregulation 
of PPP3CA and PPP3R1 has been observed in post-mor-
tem FTD-TDP temporal cortex and in the cortex of the 
rNLS8 cytoplasmic TDP-43 mouse model [143, 193]. 
Moreover, PP2B co-localises with TDP-43 aggregates in 
ALS and FTD post-mortem tissue, suggesting involve-
ment in TDP-43 pathology [122].

TDP‑43 phosphorylation: pathology‑driving or protective?
The literature on TDP-43 phosphorylation presents 
contrasting perspectives on whether it acts as a pathol-
ogy-driving force, a protective mechanism, or both. The 
following sections will explore key aspects, including the 
timing of TDP-43 phosphorylation in disease progres-
sion and its roles in mislocalisation, aggregation, and 
neurotoxicity. Additionally, this discussion will compare 
studies on TDP-43 phosphorylation, highlighting major 
findings and models for kinase/phosphatase manipula-
tion (Table 4) and phosphomimicry techniques (Table 5).

Physiological TDP‑43 phosphorylation
Although TDP-43 phosphorylation is strongly associated 
with pathological processes, some evidence suggests it 
may also serve a physiological role in TDP-43 function, 
localisation, and degradation. While phosphorylation is 
linked to cytoplasmic mislocalization of TDP-43 in dis-
ease, physiological TDP-43 also undergoes regulated 
shuttling between the nucleus and cytoplasm, indicat-
ing a potential role for phosphorylation in this dynamic 
process. Recent studies have identified IKKβ as a kinase 
capable of phosphorylating TDP-43 at residues T8, S92, 
S180, and S183 in HEK293T cells [35]. IKKβ overex-
pression reduced cytoplasmic TDP-43 and facilitated 
degradation of TDP-433A2S in Neuro2a cells [35]. Spe-
cifically, phosphorylation at S92 appears important for 
TDP-43 degradation, as the phospho-mimic S92D vari-
ant degraded significantly faster than control in Neuro2a 
cells, despite no changes in nuclear-cytoplasmic locali-
zation. Additionally, TDP-43 phosphorylation has been 
observed during cellular stress and in models express-
ing aggregation-prone or cytoplasm-driven exogenous 
TDP-43 in HEK293T cells, further supporting its role as 
a modulator of TDP-43 stability and stress response [96]. 
These findings highlight the complex interplay between 
TDP-43 phosphorylation, degradation, and localisation 
in both physiological contexts and highlights the neces-
sity of exploring all TDP-43 phosphorylation sites.

Timing of phosphorylation
The timing of TDP-43 phosphorylation across the dis-
ease course is an understudied area. Emerging evidence 
suggests TDP-43 phosphorylation is likely not an ini-
tial mislocalisation or aggregation-inducing event but 
rather is triggered by ongoing pathological processes. Li 
et al. [31] measured a significant increase in phosphoryl-
ated TDP-43 over 48 h by expressing an aggregate-prone 
TDP-43 C-terminal fragment called ND251 in Neu-
ro2a cells. Notably, this study also reported that non-
phosphorylated aggregates were primarily small puncta, 
suggesting phosphorylation occurs after aggregation ini-
tiation and maturation. However, it is also possible that 
phosphorylation-specific TDP-43 antibodies have lim-
ited sensitivity, detecting phosphorylated TDP-43 only 
within dense aggregates. Mann et  al. [262] developed a 
model to spatiotemporally induce TDP-43 oligomerisa-
tion in HEK293 cells by expressing TDP-43 tagged with 
cryptochrome 2 (CRY2), a region that undergoes revers-
ible homo-oligomerisation when exposed to blue light. 
These ontogenetically induced inclusions were positive 
for phosphorylated TDP-43 after 4 h of continuous light, 
indicating that TDP-43 undergoes phosphorylation after 
aggregation. Another study used CRY2 optogenetics to 
cause multimerization of G3BP1 to induce stress granule 
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formation in U2OS cells, showing that phosphorylated 
TDP-43 could be detected after 5 h of stimulated stress 
granule formation, demonstrating that TDP-43 recruited 
to stress granules becomes phosphorylated [263]. Ko 
et  al. [173] induced TDP-43 aggregation through dox-
ycycline-inducible expression of full length TDP-43 
tagged with N50, an aggregation-inducing sequence, 
in SH-SY5Y and U2OS cells, inducing aggregates that 
were phosphorylated. Additionally, both CSNK1D and 
CSNK1E gene expression was upregulated in these mod-
els, suggesting cytoplasmic mislocalisation and/or aggre-
gation triggers TDP-43 phosphorylation by upregulation 
of CK1δ and CK1ε. These three in vitro studies suggest 
that TDP-43 is phosphorylated in response to TDP-43 
aggregation or stress granule recruitment [173, 262, 263]. 
This is supported by findings in the rNLS8 cytoplasmic 
TDP-43 (TDP-43∆NLS) doxycycline-inducible mouse 
model of ALS [264], in which TDP-43 phosphorylation is 
first detected in the cortex during early disease stages but 
after the accumulation of insoluble TDP-43 first begins. 
A study using Drosophila found that TDP-43 recruited to 
arsenite-induced or heat-induced foci were phosphoryl-
ated at S409/410 [86], but in contrast to the findings of 
Zhang et al. [263] where the inducement of stress gran-
ule formation through the optogenetic oligomerization 
of G3BP1 caused TDP-43 phosphorylation, phospho-
rylated TDP-43 was not detected from stress granule 
recruitment, highlighting how different techniques and 
models can produce contrasting findings. Collectively, 
these studies suggest that while TDP-43 phosphoryla-
tion is an early event in disease and may occur prior to 
disease progression, it may be a secondary event to other 
pathological TDP-43 features such as mislocalisation and 
aggregation.

Mislocalisation
A prevailing question revolves around whether the path-
ological cytoplasmic accumulation of TDP-43 results 
from mechanisms that actively drive TDP-43 out of the 
nucleus or conversely, prevents nuclear re-entry during 
normal shuttling. Overexpression of the putative TDP-
43 kinases c-Abl, CK1δ, CK1ε, TTBK1, and TTBK2 have 
been reported to drive TDP-43 mislocalisation in several 
in vitro models [15, 18, 25, 29]. Similarly, TDP-43 mislo-
calisation was decreased by CK1 or TTBK1 inhibition in 
Alzheimer’s disease patient-derived lymphoblasts, CK1 
inhibition in ALS patient-derived lymphoblasts, CDC7 
inhibition in ethacrynic acid treated SH-SY5Y cells, and 
CDC7 inhibition in FTD and ALS patient-derived lymph-
oblasts, [23, 24, 26, 27]. Manipulating kinases might 
show effects on C-terminal phosphorylation, but phos-
phorylation at other sites, such as within the NLS, could 

influence mislocalisation and remain undetected due to 
the lack of suitable phosphorylation-specific antibodies.

Phosphomimicry of recombinant TDP-43 at putative 
phosphorylation sites (T88, S91, S92) impaired the NLS 
region and reduced interaction with importin α1/β, sug-
gesting an impaired ability to re-enter the nucleus [62]. 
This phenomenon is observed with other aggregate-
prone proteins including FUS, of which phosphorylation 
triggered by DNA damage hinders binding to transpor-
tin 1 (TRN1), leading to cytoplasmic accumulation [265]. 
Gruijs da Silva [34] found that phosphomimic substitu-
tions at 12 C-terminal sites did not affect TDP-43 locali-
sation or nuclear import rate in HeLa cells. These studies 
suggest that phosphorylation within the NLS may play a 
more important role than C-terminal sites in influenc-
ing cytoplasmic accumulation of TDP-43. TDP-43 phos-
phorylation has also been implicated in re-localisation to 
other subcellular compartments, including phosphoryla-
tion at T153/Y155 which induces nucleoli recruitment, 
and phosphomimicry (G298D) at disease-associated 
mutation G298S which increased TDP-43 mitochondrial 
localisation [32, 63]. Overall, these studies suggest that 
TDP-43 phosphorylation impairs nuclear entry, driv-
ing mislocalisation to the cytoplasm, although this is not 
consistent between models and techniques. Intriguingly, 
this process may serve a protective purpose by sequester-
ing misfolded or abnormal TDP-43 within the cytoplasm 
where it can undergo clearance mechanisms. Further 
studies investigating the subcellular localisation and tim-
ing of this phosphorylation in TDP-43 pathology are 
required to help understand whether TDP-43 phospho-
rylation is a protective mechanism or drives pathology.

LLPS and aggregation
Accumulating evidence suggests that TDP-43 phospho-
rylation plays a pivotal role in LLPS and aggregate forma-
tion. A recent investigation into the role of C-terminal 
phosphorylation on TDP-43 phase separation dynamics 
tested recombinant C-terminal phosphomimic variants 
with varying concentrations of NaCl [128]. The salt con-
centration plays a role is regulating recombinant protein 
stability, crystallization, and behaviour by altering the 
ionic strength of the solvent, where higher salt concen-
trations support protein stability. This study revealed that 
phosphorylation increases LLPS in the absence of NaCl 
and displays a diphasic dependence on salt concentra-
tions wherein phosphorylation decreases LLPS at higher 
concentrations. Gruijs da Silva et al. [34] mimicked phos-
phorylation at 2, 5 or 12 pathological sites (Fig.  3) and 
found phosphorylation reduced LLPS and aggregation to 
generate more liquid-like and dynamic condensates. Both 
studies proposed mechanisms based on coarse-grained 
modelling, with Haider et  al. [128] concluding that the 
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electrostatic change of phosphorylation modulates the 
intermolecular hydrophobic interactions that drive LLPS 
and Gruijs da Silva et al. [34] suggesting phosphorylation 
forms more protein-solvent interactions instead of pro-
tein–protein interactions.

Several studies have concluded that TDP-43 phospho-
rylation enhances the propensity of TDP-43 to aggre-
gate. Phosphorylated TDP-43 induced by CK1δ or CK1ε 
overexpression correlated with TDP-43 aggregation in 
an in vitro kinase assay [11], in SH-SY5Y cells [18], and 
in iPSC-derived motor neurons [20]. TTBK1 overex-
pression decreased TDP-43 solubility in HEK293 cells, 
suggesting increased aggregation [25]. Additionally, 
CK1δ inhibition in ER-stressed NSC- 34 cells decreased 
TDP-43 phosphorylation and aggregation [123]. TTBK1 
knockdown or inhibition decreased the abundance of 
high molecular TDP-43 species in Neuro2a cells [25]. 
Further, MAPK14 inhibition decreased aggregation in 
SH-SY5Y cells [56]. Inhibition of TDP-43 phosphatase 
PP2B increased phosphorylated TDP-43 and aggrega-
tion in HEK293 cells [122]. Similarly, PP2B knockout in 
C. elegans displayed increased TDP-43 aggregation and 
worse motor control phenotypes [122]. Overall, these 
studies suggest that TDP-43 phosphorylation exacerbates 
TDP-43 aggregation, which can be mitigated by decreas-
ing phosphorylation. However, none of these studies 
show a direct link between phosphorylation and aggre-
gation, since the observed outcomes could potentially 
be influenced by off-target effects of kinase/phosphatase 
manipulation.

Conversely, other studies suggest TDP-43 phospho-
rylation can decrease aggregation. Mimicking phos-
phorylation at S409/410 (2SD) reduced aggregation and 
enhanced solubility compared to wildtype TDP-43 in 
HEK293 cells [266]. Similarity, 5SD (S379/S403/S404/
S409/S410D) reduced aggregation and enhanced solubil-
ity in TDP-43 C-terminal fragment HEK293T, Neuro2a, 
and Drosophila models and in in vitro aggregation assay 
[31, 34]. Preventing phosphorylation at these sites (5SA) 
enhanced aggregation in Neuro2a cells [31]. Additional 
C-terminal phosphomimicry (12SD, S373/S375/S379/
S387/S389/S393/S395/S403/S404/S407/S409/S410D) 
in an in  vitro aggregation assay had a greater influence 
on enhancing solubility than 5SD, suggesting addi-
tional phosphorylation increases TDP-43’s resistance to 
aggregation [34]. Overexpression of CK1δ in an in vitro 
aggregation assay decreased aggregation and CK2α over-
expression enhanced the solubility of C-terminal frag-
mented TDP-43 in HEK293T and Neuro2a cells [31, 34]. 
Phosphorylation at other sites has also been found to play 
a role in TDP-43 aggregation and LLPS. Overexpression 
of IKKβ, a recently identified putative TDP-43 kinase that 
phosphorylates at T8, S92, S180, and S183, decreased 

aggregation of wildtype and 3 A2S TDP-43, an aggregate-
prone NLS and RRM1 mutant, in Neuro2a cells [35]. 
Phosphomimicry at S48 disrupted TDP-43 LLPS and pol-
ymeric assembly to generate more dynamic assemblies in 
HEK293 cells [33]. This is consistent with Wang et al. [33] 
where S48 phosphomimicry of N-terminal recombinant 
TDP-43 impaired LLPS. Aikio et al. [56] found that phos-
phomimicry at S292, S409/410 or both enhanced LLPS 
of recombinant TDP-43. The role of TDP-43 phospho-
rylation in aggregation and LLPS is complex and context-
dependent due to conflicting findings, various models 
and techniques, and multiple intermediate species. This 
highlights the need for further research to clarify these 
mechanisms and their implications for neurodegenera-
tive diseases.

Neurotoxicity
TDP-43 phosphorylation may contribute to neuronal 
toxicity – defined as mechanisms that lead to cellular 
dysfunction and death-potentially by influencing TDP-
43 mislocalisation and aggregation, as discussed above. 
However, this remains a topic of debate, with conclu-
sions varying between studies based on different kinases 
and experimental models. For example, while TTBK1 
overexpression enhanced TDP-43 accumulation and 
decreased locomotion of TDP-43WT overexpressing 
C. elegans, there were no changes to lifespan [22]. Tian 
et  al. [25] found comparable results in HEK293 cells, 
where TTBK1 overexpression decreased TDP-43 solu-
bility and enhanced cytoplasmic mislocalisation without 
influencing cell death. However, this study also reported 
that TTBK1 knockdown rescued neurite shortening and 
neuron loss in TDP-43WT overexpressing iPSC neurons 
and extended the lifespan of TDP-43WT Drosophila. This 
is consistent with findings of Nozal et  al. [30] whereby 
TTBK1 inhibition prevented cell death induced by 
ethacrynic acid in SH-SY5Y cells and ameliorated motor 
neuron loss in the ventral horn in TDP-43A315T mice.

Similar to the effects of TTBK1, CK1 overexpression 
also enhances, and inhibition ameliorates, TDP-43-medi-
ated toxicity in model systems. Choksi et  al. [16] found 
that SH-SY5Y cell death was enhanced by incubation 
with oligomerised TDP-43 treated by CK1. Furthermore, 
overexpression of the CK1ε homolog Doubletime (DBT) 
in Drosophila enhanced toxicity of TDP-43Q331K, but not 
TDP-43WT or TDP-43M337V. Nonaka et  al. [18] demon-
strated that expression of a hyperactive truncated CK1δ 
variant in yeast increased toxicity. Another study found 
that inhibition of CK1δ in SH-SY5Y cells decreased toxic-
ity from ethacrynic acid [19]. A different approach found 
that knockdown of CK1α or CK1δ in TDP-43 overex-
pressed HEK293 cells prevented cytotoxicity [28]. In a 
TDP-43A315T mouse model, inhibiting CK1δ prevented 
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motor neuron loss in the spinal cord in addition to delay-
ing weight loss and decreasing neuroinflammation as 
demonstrated by elevated microglial cells and astrocytes 
[24].

Liachko et  al. [14] showed that the overexpression of 
TDP-43WT or TDP-43M337V and CDC7 enhances neuron 
loss in C. elegans and causes behavioural defects. Addi-
tionally, CDC7 inhibition prevents neuron loss from 
TDP-43M337V expression in C. elegans. Another study 
also found that CDC7 inhibition decreased cell death 
from TDP-43 pathology induced through ethacrynic acid 
in SH-SY5Y cells [26]. A further study found that overex-
pression of IKKβ decreased toxicity of TDP-43K181E/A321V 
in Neuro2a cells and with TDP-433A2S AAV expression 
in a TDP-43 knockout mouse model [35]. In contrast, 
MAPK14 inhibition or knockdown enhanced the sur-
vival of SH-SY5Y cells expressing TDP-43M337V. Overall, 
the phosphorylation of TDP-43 appears to play a role in 
neuronal toxicity, with effects varying between different 
kinases and experimental models. These findings under-
score the potential for kinase-targeted therapies in miti-
gating TDP-43-associated neurodegenerative diseases, 
although further research is needed to fully understand 
the mechanisms involved. It is also important to consider 
the off-target effects of kinase/phosphatase manipulation 
and develop strategies to modulate TDP-43 phosphoryla-
tion in a more highly specific manner.

Hypothesised role of TDP‑43 phosphorylation
We propose that TDP-43 phosphorylation serves a physi-
ological role in some contexts in promoting TDP-43 
LLPS to facilitate cellular processes that rely on phase-
separated compartments. However, under pathologi-
cal conditions, such as cellular stress or other unknown 
trigger, the upregulation or activation of TDP-43 kinases 
may drive dramatically increased levels of phosphoryla-
tion. Furthermore, TDP-43 itself may regulate its own 
phosphorylation, as suggested by its binding and regula-
tion of CSNK1E mRNA [20]. In disease, we hypothesize 
that phosphorylated TDP-43 becomes sequestered in liq-
uid droplet structures, which transition in an irreversible 
manner to a solid-like state. This solid phase likely traps 
TDP-43 in a phosphorylated state, shielding it from phos-
phatases. The phosphorylated TDP-43 detected in post-
mortem tissues may thus reflect the TDP-43 post-liquid 
droplet state. In addition to C-terminal phosphorylation 
and LLPS, it is likely other TDP-43 phosphorylation sites 
have different functions. For example, phosphorylation 
around the NLS has been linked with influencing inter-
actions with importins and thus reducing nuclear entry 
[62]. Furthermore, phosphorylation at S92, a site phos-
phorylated by IKKβ, may play a role in TDP-43 degrada-
tion [35].

These hypotheses align with similar findings in other 
neurodegenerative diseases, for example α-synuclein 
[267, 268], FUS [269, 270], and tau [271] also experi-
ence an abnormal increase in phosphorylation in dis-
ease. These proteins, like TDP-43, can undergo LLPS 
[101, 272–274], transition from liquid to solid phases 
[100, 101], and phosphorylation has been linked with liq-
uid droplet regulation [101, 272, 273, 275, 276]. CK1 has 
been implicated in the phosphorylation of these proteins, 
including α-synuclein [172], FUS [277], tau [169, 278], in 
addition to TDP-43 [11, 167]. The role of CK1 in regu-
lating phosphorylation of multiple neurodegenerative 
proteins suggests it may represent a shared mechanism 
driving pathological phase transitions. Understanding 
the role and regulation of TDP-43 phosphorylation could 
provide valuable insights into the broader mechanisms of 
neurodegeneration and inform therapeutic approaches 
applicable across multiple neurodegenerative diseases.

Conclusion
The current literature on TDP-43 phosphorylation has 
developed using a variety of models and techniques, 
resulting in conflicting findings and interpretations that 
underscore the complexity of these processes in neuro-
degeneration. While TDP-43 phosphorylation is con-
sistently observed in post-mortem ALS and FTLD-TDP 
tissue, the influence of TDP-43 phosphorylation on dis-
ease progression remains debated. Initially, phospho-
rylation was hypothesised to exacerbate pathology by 
promoting TDP-43 mislocalisation, aggregation, and cell 
death. However, emerging evidence suggests that phos-
phorylation may modulate LLPS to decrease TDP-43 
aggregation and neurotoxicity, suggesting a protective 
role.

This review has examined the various techniques and 
models used to study TDP-43 phosphorylation, each 
with its own strengths and limitations. These method-
ological differences, along with the uncertainty about 
the timing of phosphorylation disease, complicate the 
ability to draw definitive conclusions. Furthermore, the 
possibility that TDP-43 mislocalisation and/or aggre-
gation itself drives TDP-43 phosphorylation suggests 
that current approaches may not fully capture the com-
plexity of the disease process. Given these challenges, 
there is a pressing need to develop new techniques and 
approaches to accurately assess the timing and conse-
quences of phosphorylation at different TDP-43 sites. 
This includes developing a more thorough array of 
well-validated TDP-43 phosphorylation-specific anti-
bodies, targeting sites such as S92 – which has been 
implicated in TDP-43 degradation – which will be cru-
cial for understanding the role of pathological TDP-43 
phosphorylation but may also reveal insights into the 
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potential role of TDP-43 phosphorylation under basal 
conditions. The development of TDP-43 phosphoryla-
tion-specific nanobodies offers a promising method for 
real-time detection in live cells, helping to uncover the 
time and location where phosphorylated occurs. Fur-
thermore, the impact of TDP-43 phosphorylation on 
interactions with other proteins remains largely unex-
plored. Identifying the phosphorylated TDP-43 pro-
teome will provide valuable insights into its function 
consequences. Finally, identifying the full suite of TDP-
43 kinases, deciphering their regulation mechanisms, 
and determining the specific sites they target are criti-
cal steps toward unravelling the upstream drivers of 
pathological phosphorylation. For example, it remains 
unclear whether disease-related alterations in levels 
of function of TDP-43 kinases has downstream effects 
on other target proteins which could concurrently 
affect disease mechanisms. Further research is crucial 
to understand the driving forces and consequences of 
TDP-43 phosphorylation and to identify therapeutic 
targets that can effectively regulate TDP-43 pathology 
while minimizing off-target effects, ultimately improv-
ing neuronal health in ALS and FTLD-TDP.
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